PHYS 232: Lecture supplement 1

P-23.5: Two protons in a molecule are are separated by $3.8 \times 10-10 \mathrm{~m}$. Compare the electric force between the protons to the gravitational force gravitational force between them.

(a)
(b)
$F_{e}=\frac{k_{e} q_{1} q_{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(3.80 \times 10^{-10} \mathrm{~m}\right)^{2}}=1.59 \times 10^{-9} \mathrm{~N}$ (repulsion)
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)^{2}}{\left(3.80 \times 10^{-10} \mathrm{~m}\right)^{2}}=1.29 \times 10^{-45} \mathrm{~N}$

The electric force is larger by 1.24×10^{36} times

12400000000000000000000000000000000000 !

P-23.7: Three point charges are located at the corners of an equilateral triangle; calculate the electric force on the $7 \mu \mathrm{C}$ charge.

$F_{1}=k_{e} \frac{q_{1} q_{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(7.00 \times 10^{-6} \mathrm{C}\right)\left(2.00 \times 10^{-6} \mathrm{C}\right)}{(0.500 \mathrm{~m})^{2}}=0.503 \mathrm{~N}$
$F_{2}=k_{e} \frac{q_{1} q_{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(7.00 \times 10^{-6} \mathrm{C}\right)\left(4.00 \times 10^{-6} \mathrm{C}\right)}{(0.500 \mathrm{~m})^{2}}=1.01 \mathrm{~N}$
$F_{x}=(0.503+1.01) \cos 60.0^{\circ}=0.755 \mathrm{~N}$
$F_{y}=(0.503-1.01) \sin 60.0^{\circ}=-0.436 \mathrm{~N}$
$\mathbf{F}=(0.755 \mathrm{~N}) \mathbf{i}-(0.436 \mathrm{~N}) \mathbf{j}=0.872 \mathrm{~N}$ at an angle of 330°

