## PHYS 232 Lecture supplement 10


26.23: $\mathrm{C} 1=6 \mu \mathrm{~F}, \mathrm{C} 2=3 \mu \mathrm{~F}$, and $\Delta \mathrm{V}=20 \mathrm{~V}$. Capacitor C 1 is charged by closing S 1 . S1 is then opened and S 2 is closed. Calculate the initial charge on C 1 and the final charge on each capacitor.
26.40: Two identical parallel-plate capacitors, each with capacitance C, are charged to $\Delta \mathrm{V}$ and connected in parallel. Then the plate separation in one is doubled.
Find;

1. the total energy of the two capacitors before the change
2. the potential difference across each after the change
3. total energy of the system after the change

## 27.9

The electron beam from a particle accelerator has a circular cross section of radius 1.00 mm .

- If the current is $8 \mu \mathrm{~A}$, what is the current density in the beam assuming that it is uniform throughout?
- Find the electron density of the beam.
27.9 (a) $J=\frac{I}{A}=\frac{8.00 \times 10^{-6} \mathrm{~A}}{\pi\left(1.00 \times 10^{-3} \mathrm{~m}\right)^{2}}=2.55 \mathrm{~A} / \mathrm{m}^{2}$
(b) From $J=n e v_{d}$, we have $\quad n=\frac{J}{e v_{d}}=\frac{2.55 \mathrm{~A} / \mathrm{m}^{2}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=5.31 \times 10^{10} \mathrm{~m}^{-3}$
(c) From $I=\Delta Q / \Delta t$, we have $\quad \Delta t=\frac{\Delta Q}{I}=\frac{N_{\mathrm{A}} e}{I}=\frac{\left(6.02 \times 10^{23}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{8.00 \times 10^{-6} \mathrm{~A}}=1.20 \times 10^{10} \mathrm{~s}$ (This is about 381 years!)
26.23

$$
\begin{array}{ll}
C=\frac{Q}{\Delta V} & \text { so } \\
Q=120 \mu \mathrm{C} & 6.00 \infty 10^{-6}=\frac{Q}{20.0} \\
Q_{1}=120 \mu \mathrm{C}-Q_{2} \quad \text { and } & \Delta V=\frac{Q}{\mathrm{C}} \\
\frac{120-Q_{2}}{C_{1}}=\frac{Q_{2}}{C_{2}} \quad \text { or } & \frac{120-Q_{2}}{6.00}=\frac{Q_{2}}{3.00} \\
(3.00)\left(120-Q_{2}\right)=(6.00) Q_{2} & \\
Q_{2}=\frac{360}{9.00}=40.0 \mu \mathrm{C} \\
Q_{1}=120 \mu \mathrm{C}-40.0 \mu \mathrm{C}=80.0 \mu \mathrm{C}
\end{array}
$$

and


