Lecture Supplement 13

*P28.14 When S is open, R_{1}, R_{2}, R_{3} are in series with the battery. Thus:

$$
\begin{equation*}
R_{1}+R_{2}+R_{3}=\frac{6 \mathrm{~V}}{10^{-3} \mathrm{~A}}=6 \mathrm{k} \Omega . \tag{1}
\end{equation*}
$$

When S is closed in position 1, the parallel combination of the two R_{2} 's is in series with R_{1}, R_{3}, and the battery. Thus:

$$
\begin{equation*}
R_{1}+\frac{1}{2} R_{2}+R_{3}=\frac{6 \mathrm{~V}}{12 \times 10^{-3} \mathrm{~A}}=5 \mathrm{k} \Omega . \tag{2}
\end{equation*}
$$

When S is closed in position $2, R_{1}$ and R_{2} are in series with the battery. R_{3} is shorted.
Thus:

$$
\begin{equation*}
R_{1}+R_{2}=\frac{6 \mathrm{~V}}{2 \times 10^{-3} \mathrm{~A}}=3 \mathrm{k} \Omega . \tag{3}
\end{equation*}
$$

From (1) and (3): $R_{3}=3 \mathrm{k} \Omega$.
Subtract (2) from (1): $R_{2}=2 \mathrm{k} \Omega$.
From (3): $R_{1}=1 \mathrm{k} \Omega$.
Answers: $R_{1}=1.00 \mathrm{k} \Omega, R_{2}=2.00 \mathrm{k} \Omega, R_{3}=3.00 \mathrm{k} \Omega$.

P28.20

P28.71
$+15.0-(7.00) I_{1}-(2.00)(5.00)=0$
$5.00=7.00 I_{1}$
$I_{3}=I_{1}+I_{2}=2.00 \mathrm{~A}$
$0.714+I_{2}=2.00$
so

$$
I_{2}=129 \mathrm{~A}
$$

FIG. P28.20
$+\varepsilon-2.00(1.29)-5.00(2.00)=0 \quad \varepsilon=12.6 \mathrm{~V}$
(a) After steady-state conditions have been reached, there is no DC current through the capacitor.

Thus, for $R_{3}: \quad I_{R_{3}}=0($ steady - state $)$.
For the other two resistors, the steady-state current is simply determined by the $9.00-\mathrm{V}$ emf across the $12-\mathrm{k} \Omega$ and $15-\mathrm{k} \Omega$ resistors in series:

For R_{1} and R_{2} :

$$
I_{\left(R_{1}+R_{2}\right)}=\frac{\varepsilon}{R_{1}+R_{2}}=\frac{9.00 \mathrm{~V}}{(12.0 \mathrm{k} \Omega+15.0 \mathrm{k} \Omega)}=333 \mu \mathrm{~A}(\text { steady }- \text { state }) .
$$

(b) After the transient currents have ceased, the potential difference across C is the same as the potential difference across $R_{2}\left(=\mathbb{R}_{2}\right)$ because there is no voltage drop across R_{3}. Therefore, the charge Q on C is

$$
\begin{aligned}
Q & =C(\Delta V)_{R_{2}}=C\left(\mathbb{R}_{2}\right)=(10.0 \mu \mathrm{~F})(333 \mu \mathrm{~A})(15.0 \mathrm{k} \Omega) \\
& =50.0 \mu \mathrm{C} .
\end{aligned}
$$

FIG. P28.71(b)
(c) When the switch is opened, the branch containing R_{1} is no longer part of the circuit. The capacitor discharges through $\left(R_{2}+R_{3}\right)$ with a time constant of $\left(R_{2}+R_{3}\right) C=(15.0 \mathrm{k} \Omega+3.00 \mathrm{k} \Omega)(10.0 \mu \mathrm{~F})=0.180 \mathrm{~s}$. The initial current I_{i} in this discharge circuit is determined by the initial potential difference across the capacitor applied to $\left(R_{2}+R_{3}\right)$ in series:

FIG. P28.71(c)

$$
I_{i}=\frac{(\Delta V)_{C}}{\left(R_{2}+R_{3}\right)}=\frac{\mathbb{R}_{2}}{\left(R_{2}+R_{3}\right)}=\frac{(333 \mu \mathrm{~A})(15.0 \mathrm{k} \Omega)}{(15.0 \mathrm{k} \Omega+3.00 \mathrm{k} \Omega)}=278 \mu \mathrm{~A} .
$$

Thus, when the switch is opened, the current through R_{2} changes instantaneously from $333 \mu \mathrm{~A}$ (downward) to $278 \mu \mathrm{~A}$ (downward) as shown in the graph. Thereafter, it decays according to

$$
I_{R_{2}}=I_{i} e^{-t\left(R_{2}+R_{3}\right) c}=(278 \mu \mathrm{~A}) e^{-t(0.180 \mathrm{~s})}(\text { for } t>0) .
$$

(d) The charge q on the capacitor decays from Q_{i} to $\frac{Q_{i}}{5}$ according to

$$
\begin{aligned}
& q=Q_{i} e^{-t\left(R_{2}+R_{3}\right) C} \\
& \frac{Q_{i}}{5}=Q_{i} e^{-(-40.180 \mathrm{~s})} \\
& 5=e^{\sharp 0.180 \mathrm{~s}} \\
& \ln 5=\frac{t}{180 \mathrm{~m} \mathrm{~s}} \\
& t=(0.180 \mathrm{~s})(\ln 5)=290 \mathrm{~m} \mathrm{~s}
\end{aligned}
$$

Sign convention for the second rule:

- If a resistor R is traversed in the direction of the current; $\Delta V=-I R$. (Current flows from a higher potential to a lower potential)
- If a resistor R is traversed in the direction opposite the current; $\Delta V=I R$.
- If a source of $e m f$ (assumed to have no internal resistance) is traverses in from - to $+; \Delta V=\varepsilon$.
- If a source of emf (assumed to have no internal resistance) is traverses in from + to $-; \Delta V=-\varepsilon$.
- if the battery has an internal resistance r, it has to be treated as a regular resistance in series with the battery; $\Delta V=\varepsilon-I r$.
(a)

(b)

(c)

(d)

