PHYS 232:Lecture Supplement 4

24.4

(a) $A^{\prime}=(10.0 \mathrm{~cm})(30.0 \mathrm{~cm})$

$$
\begin{aligned}
& A^{\prime}=300 \mathrm{~cm}^{2}=0.0300 \mathrm{~m}^{2} \\
& \Phi_{E, A^{\prime}}=E A^{\prime} \cos \theta \\
& \Phi_{E, A^{\prime}}=\left(7.80 \times 10^{4}\right)(0.0300) \cos 180^{\circ} \\
& \Phi_{E, A^{\prime}}=-2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}
\end{aligned}
$$

(b) $\Phi_{E, A}=E A \cos \theta=\left(7.80 \times 10^{4}\right)(A) \cos 60.0^{\circ}$

$$
\begin{aligned}
& A=(30.0 \mathrm{~cm})(w)=(30.0 \mathrm{~cm})\left(\frac{10.0 \mathrm{~cm}}{\cos 60.0^{\circ}}\right)=600 \mathrm{~cm}^{2}=0.0600 \mathrm{~m}^{2} \\
& \Phi_{E, A}=\left(7.80 \times 10^{4}\right)(0.0600) \cos 60^{\circ}=+2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}
\end{aligned}
$$

(c) The bottom and the two triangular sides all lie parallel to \mathbf{E}, so $\Phi_{E}=0$ for each of these. Thus,

$$
\Phi_{E, \text { total }}=-2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}+2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}+0+0+0=0
$$

(a) $q_{\text {in }}=+3 Q-Q=+2 Q$
(b) The charge distribution is spherically symmetric and $q_{\text {in }}>0$. Thus, the field is directed radially outward.
(c) $E=\frac{k_{e} q_{\text {in }}}{r^{2}}=\frac{2 k_{e} Q}{r^{2}} \quad$ for $r \geq c$
(d) Since all points within this region are located inside conducting material, $E=0$ for $b<r<c$.
(e) $\Phi_{E}=\int \mathbf{E} \cdot d \mathbf{A}=0 \Rightarrow q_{\text {in }}=\mathrm{e}_{0} \Phi_{E}=0$
(f) $\quad q_{\text {in }}=+3 Q$
(g) $E=\frac{k_{e} q_{\text {in }}}{r^{2}}=\frac{3 k_{e} Q}{r^{2}}$ (radially outward) for $a \leq r<b$
(h) $\quad q_{\text {in }}=\rho V=\left(\frac{+3 Q}{\frac{4}{3} \pi a^{3}}\right)\left(\frac{4}{3} \pi r^{3}\right)=+3 Q \frac{r^{3}}{a^{3}}$
(i) $E=\frac{k_{e} q_{\text {in }}}{r^{2}}=\frac{k_{e}}{r^{2}}\left(+3 Q \frac{r^{3}}{a^{3}}\right)=\quad 3 k_{e} Q \frac{r}{a^{3}} \quad$ (radially outward) for $0 \leq r \leq a$
(j) From part (d), $E=0$ for $b<r<c$. Thus, for a spherical gaussian surface with $b<r<c, q_{\text {in }}=+3 Q+q_{\text {inner }}=0$ where $q_{\text {inner }}$ is the charge on the inner surface of the conducting shell. This yields $q_{\text {inner }}=-3 Q$
(k) Since the total charge on the conducting shell is $q_{\text {net }}=q_{\text {outer }}+q_{\text {inner }}=-Q$, we have $q_{\text {outer }}=-Q-q_{\text {inner }}=-Q-(-3 Q)=+2 Q$
(l) See page A. 38 of the text book

