PHYS 232:Lecture Supplement 4

24.4

A' = (10.0 cm)(30.0 cm)(a) $A' = 300 \text{ cm}^2 = 0.0300 \text{ m}^2$ $\Phi_{E,A'} = EA'\cos\theta$ $\Phi_{E, A'} = (7.80 \times 10^4)(0.0300)\cos 180^\circ$ $\Phi_{E, A'} = -2.34 \text{ kN} \cdot \text{m}^2/\text{C}$ $\Phi_{E, A} = EA \cos \theta = (7.80 \times 10^4)(A) \cos 60.0^\circ$ (b) $A = (30.0 \text{ cm})(w) = (30.0 \text{ cm}) \left(\frac{10.0 \text{ cm}}{\cos 60.0^{\circ}}\right) = 600 \text{ cm}^2 = 0.0600 \text{ m}^2$ $\Phi_{E,A} = (7.80 \times 10^4)(0.0600)\cos 60^\circ = +2.34 \text{ kN} \cdot \text{m}^2/\text{C}$

24.55

- (a) $q_{\rm in} = +3Q Q = +2Q$
- (b) The charge distribution is spherically symmetric and $q_{in} > 0$. Thus, the field is directed radially outward .

(c)
$$E = \frac{k_e q_{\text{in}}}{r^2} = \boxed{\frac{2k_e Q}{r^2}}$$
 for $r \ge c$

(d) Since all points within this region are located inside conducting material, E = 0 for b < r < c.

(e)
$$\Phi_E = \int \mathbf{E} \cdot d\mathbf{A} = 0 \implies q_{\text{in}} = \mathbf{e}_0 \Phi_E = \mathbf{0}$$

- (f) $q_{\rm in} = +3Q$
- (g) $E = \frac{k_e q_{in}}{r^2} = \boxed{\frac{3k_e Q}{r^2}}$ (radially outward) for $a \le r < b$

(h)
$$q_{\rm in} = \rho V = \left(\frac{+3Q}{\frac{4}{3}\pi a^3}\right) \left(\frac{4}{3}\pi r^3\right) = \left[+3Q\frac{r^3}{a^3}\right]$$

- (i) $E = \frac{k_e q_{in}}{r^2} = \frac{k_e}{r^2} \left(+3Q \frac{r^3}{a^3} \right) =$ $3k_e Q \frac{r}{a^3}$ (radially outward) for $0 \le r \le a$
- (j) From part (d), E = 0 for b < r < c. Thus, for a spherical gaussian surface with b < r < c, $q_{in} = +3Q + q_{inner} = 0$ where q_{inner} is the charge on the inner surface of the conducting shell. This yields $q_{inner} = \boxed{-3Q}$
- (k) Since the total charge on the conducting shell is $q_{\text{net}} = q_{\text{outer}} + q_{\text{inner}} = -Q$, we have

$$q_{\text{outer}} = -Q - q_{\text{inner}} = -Q - (-3Q) = +2Q$$

(l) See page A.38 of the text book

$$h_c$$