A brief Introduction to Quantum Mechanics

The probability per unit volume of finding a photon somewhere is
proportional to the number of photons per unit volume there:

The probability per unit volume of finding a photon is proportional to the square of
the amplitude of the associated e/m wave

Since all forms of matter show wave-particle duality we can apply this idea to other
particles too:

The probability per unit volume of finding a particle somewhere is proportional
to the square of the amplitude of the associated de Broglie wave.

Amplitude of the associated wave is called the probability amplitude or the

Wave function (V')

For example, the wave function for a free particle with a
precisely known momentum p,:

W(x,t) = Acos(kx —wt)
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If the potential energy of the system does not vary with time, the time
and spatial dependences of the wave function can be separated; and
the time dependence can be represented simply by e’i”’ as in this
case, so we will concentrate only on the space part: y(x)

Since the wave function is often complex valued:

v =y
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The probability of finding the particle in a volume dV: |l//| dv

We will deal only with one-dimensional systems where the particle must be
located along the x axis. So the probability of finding the particle in an interval
dx: Mzdx

the probability of finding the particle in the interval
between a and b:

b
By, = ﬂ‘//‘zdx

Since the particle must be found somewhere
along the x axis:

_ﬂy/‘zdx =1
/ | When this condition is satisfied the wave

b function is said to be normalized.

y(x) must be continuous in space with no discontinuous jumps

y(x) must be defined at all points in space and be single —valued.

The average values of parameters like the position (x), momentum (p) and
energy (E) can be extracted out from the wave function. These average
values are called the expectation values of the variables:

The average position, or the expectation value of x is defined by the
equation:

<x> = Tw*xwdx

Brackets <....> denote the expectation value

The expectation value for any function f(x) (like energy) associated
with the particle is given by the equation:

(fO)= v fCow dx



Example: A particle in a box: consider a particle trapped in a 1D-box
bouncing back and forth between the walls. Since there is zero probability of
finding the particle outside, y(x)=0 outside the box; and since the wave-function
must be continuous, y(x)=0 at the walls too.
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., The quantization of energy comes out naturally from quantum
mechanics and is not an ad-hoc concept as was the case in

Planck’s theory
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Consider ‘//( X) = Asin ( ]Qf)

d 5 .
— A sin kx= Akcoskx and —S Y =—Ak sinkx
dx dx
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But: the kinetic energy: K :% ,and k= P
m
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Schrodinger Equation: The basic wave equation of non-relativistic
Quantum Mechanics



Examples:

1. A proton is confined to move in a one-dimensional box of length 0.200 nm.
(a) Find the lowest possible energy of the proton. (b) What If? What is the lowest
possible energy of an electron confined to the same box? (c) How do you account for
the great difference in your results for (a) and (b)?

ne

The ground state energy of a particle (mass m) in a 1-dimensional box of width L is E; = ——-.
. 8ml”

(a) For a proton (’w =167x107% I\g] in a 0.200-nm wide box:

(6.626 % 107 ]-f{']l

E = — —=822x107J=[513x107 eV |.
8(1.67 <10 kg)(2.00x 107" m|
(b) For an electron (m =911x107%" kg] in the same size box:
(6.626x 1073 J.5)°
E =— - — : _,,_1.51\10‘”*1_-_
8(9.11x107" kg)(2.00 x 107" m]"
(c) The electron has a much higher energy because it is much less massive.

2. A particle in an infinitely deep square well has a wave function given by

v, ()= \E sin(zzxj

for 0 < x < L and zero otherwise.

(a) Determine the expectation value of x.

(b) Determine the probability of finding the particle near L/2, by calculating the
probability that the particle lies in the range 0.490L < x < 0.510L.

(c) What If? Determine the probability of finding the particle near L/4, by calculating
the probability that the particle lies in the range 0.240L < x < 0.260L.

(d) Argue that the result of part (a) does not contradict the results of parts (b) and (c).
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(d) In the n = 2 graph in Figure 41.4 (b), it is more probable to find the particle either near x =7

3L . -
or x =— than at the center, where the probability density is zero.

Nevertheless, the symmetry of the distribution means that the average position is >



