Example 25.5:
»  Find the electric potential at a point F* located on the perpendicular
axis of uniformly charged ring of radius o and total charge Q.

Let us orient the ring so that the perpendicular axis Is along the x
direction and point P is at a distance = from the center of the ring.
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Find the electric field at point P
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The potential is maximum at the center of the center of the ring.




Potential due to a charged conductor

» Potential difference between points A and B on the surface of the
conductor:

e Select a path along the conductor. = E L ds

B
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# This works for any two points on the surface.
e E = 0 inside the conductor.

s Vo — V= 0 for any point inside the conductor too.
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« = Every point of a conductor in equilibrium is at the same
electric potential

e Electric filed lines from a sharp point of a conductor (small radius of
curvature) spreads our quicker than the field lines from an almost flat
conductor (large curvature of radius).

e If both surfaces are part of the same conductor, they should both be
at the same potential.

e Amount of energy needed to bring a charge from oc to each point
must be the same.

e = The electric field near the sharp point has to be higher than
the electric filed near a surface with a higher radius of
curvature.

e Since, E = % just outside a conducting surface, the charge

density near the sharp point is higher than the charge density
near a surface with a higher radius of curvature.




Example 25.9

Two spherical conductors are separated by a large distance and have the
indicated charges. They are connected by a thin conducting wire. Find the
magnitudes of the electric fields at the surface of the spheres.

« Since they are connected by a conductor, the two spheres are at the
same potential:
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Cavity within a conductor

e for any two points on the surface of the cavity,
Vg —Va=0

B
UZVB—VAZ—/ E.ds (7)
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e This is to work for every path from A to B.
e = E is zero everywhere inside the cavity.

e A closed conducting surface creates a field free
region inside.
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Problem 25.43:
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