Example 25.5:

 Find the electric potential at a point P located on the perpendicular axis of uniformly charged ring of radius a and total charge Q.
 Let us orient the ring so that the perpendicular axis is along the x

Let us orient the ring so that the perpendicular axis is along the x direction and point P is at a distance x from the center of the ring.

$$V = k_c \int \frac{dq}{r} \tag{22}$$

$$= k_e \int \frac{dq}{\sqrt{(x^2 + a^2)}} \tag{23}$$

$$x$$
, and a are constants $=\frac{k_e}{\sqrt{(x^2+a^2)}}\int dq$ (24)

$$= \frac{k_e Q}{\sqrt{(x^2 + a^2)}}$$
 (25)

Find the electric field at point P

Harcourt.

$$\mathbf{E} = -\frac{dV}{dx}\hat{\mathbf{i}} - \frac{dV}{dy}\hat{\mathbf{j}} - \frac{dV}{dz}\hat{\mathbf{j}}$$
 (26)

$$\frac{dV}{dx} = -\frac{k_c Qx}{(x^2 + a^2)^{3/2}} \tag{27}$$

$$\frac{dV}{dy} = 0 (28)$$

$$\frac{dV}{dx} = 0 (29)$$

$$\Rightarrow \mathbf{E} = -\frac{dV}{dx} = \frac{k_e Qx}{(x^2 + a^2)^{3/2}}\hat{\mathbf{i}}$$
 (30)

• Where is the potential maximum ? At the maximum:

$$\frac{dV}{dx} = 0 \tag{31}$$

$$-\frac{k_e Qx}{(x^2 + a^2)^{3/2}} = 0 (32)$$

$$\Rightarrow x = 0 \tag{33}$$

The potential is maximum at the center of the center of the ring.

Potential due to a charged conductor

- Potential difference between points A and B on the surface of the conductor:
- Select a path along the conductor. ⇒ E ⊥ ds

$$V_B - V_A = -\int_A^B \mathbf{E} \cdot d\mathbf{s} = 0 \tag{1}$$

- . This works for any two points on the surface.
- $\mathbf{E} = 0$ inside the conductor.
- ullet V_C V_A = 0 for any point inside the conductor too.
- ⇒ Every point of a conductor in equilibrium is at the same electric potential

Harrourt Inc

- Electric filed lines from a sharp point of a conductor (small radius of curvature) spreads our quicker than the field lines from an almost flat conductor (large curvature of radius).
- If both surfaces are part of the same conductor, they should both be at the same potential.
- Amount of energy needed to bring a charge from ∞ to each point must be the same.
- ⇒ The electric field near the sharp point has to be higher than the electric filed near a surface with a higher radius of curvature.
- Since, $E=\frac{\sigma}{\epsilon_0}$ just outside a conducting surface, the charge density near the sharp point is higher than the charge density near a surface with a higher radius of curvature.

Example 25.9

Two spherical conductors are separated by a large distance and have the indicated charges. They are connected by a thin conducting wire. Find the magnitudes of the electric fields at the surface of the spheres.

. Since they are connected by a conductor, the two spheres are at the same potential:

$$V = k_e \frac{q_1}{r_1} = k_e \frac{q_2}{r_2} \tag{2}$$

$$\Rightarrow \frac{q_1}{q_2} = \frac{r_1}{r_2}$$
(3)

but,

$$E_1 = k_e \frac{q_1}{r_1^2} \; \; ; \quad E_2 = k_e \frac{q_2}{r_2^2} \tag{4} \label{eq:4}$$

$$\Rightarrow \frac{E_1}{E_2} = \frac{q_1}{q_2} \frac{r_2^2}{r_1^2}$$

$$\frac{E_1}{E_2} = \frac{r_2}{r_1}$$

$$\frac{c_1}{c_2} = \frac{r_2}{r_1}$$

(6)

Cavity within a conductor

· for any two points on the surface of the cavity, $V_B - V_A = 0$

$$0 = V_B - V_A = -\int_A^B \mathbf{E} \cdot d\mathbf{s} \tag{7}$$

- This is to work for every path from A to B.
- ⇒ E is zero everywhere inside the cavity.
- · A closed conducting surface creates a field free region inside.

Problem 25.43:

25.43 (a)
$$\left[\alpha\right] = \begin{bmatrix} \lambda \\ \overline{x} \end{bmatrix} = \frac{C}{m} \cdot \left(\frac{1}{m}\right) = \boxed{\frac{C}{m^2}}$$

25.43 (a)
$$[\alpha] = \left[\frac{\lambda}{x}\right] = \frac{C}{m} \cdot \left(\frac{1}{m}\right) = \left[\frac{C}{m^2}\right]$$
 (b) $V = k_e \int \frac{dq}{r} = k_e \int \frac{\lambda dx}{r} = k_e \alpha \int_0^L \frac{x dx}{(d+x)} = \left[k_e \alpha \left[L - d\ln\left(1 + \frac{L}{d}\right)\right]\right]$

