QCD measurements at

Nils Gollub

ROYAL INSTITUTE OF TECHNOLOGY

(KTH), Sweden

for the DØ collaboration

NEW TRENDS IN HIGH ENERGY PHYSICS

Yalta, Crimea, Ukraine 16. - 23. September 2006

Setting the scene...

Outline

- Some fundamental concepts
- Inclusive jet cross section
- Inclusive isolated photon (γ) cross section
- Heavy flavor production
- Z + jets measurements
- Summary

The Tevatron

- Highest energy accelerator currently operational
- Proton antiproton collisions at 1.96 TeV (RunII)
- Experiments CDF and DØ
- Delivered well above 1 fb-1, goal for RunII is 4-9 fb-1

Collider Run II Integrated Luminosity

The DØ Detector

Tracking

- Silicon Tracker
- Fiber Tracker
- 2T magnetic field
- Central and Forward Pre Muon Detector shower detectors

- Calorimeter
 - Liquid Argon
 - 4 EM, 7 hadronic layers
- - 1.8T Toroid
 - $|\eta| < 2$

Rapidity: $y = \frac{1}{2} \ln(\frac{E + p_z}{E - p_z})$

Distance:

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta y)^2}$$

QCD at hadron colliders

Quantum Chromo Dynamics describes the strong force mediated by gluons between quarks

Precision measurements allow for

extraction of Parton Density Functions (PDF)

and the testing of

- perturbative QCD calculations
- phenomenological models for fragmentation
- merging of higher order calculations with fragmentation models

- QCD multijet production has a cross section several orders of magnitude larger than typical electroweak and new physics phenomena
- Understanding of this background is mandatory for most analysis performed at hadron colliders

The Bits and Pieces

$$\sigma = \sum \int dx_1 dx_2 f_q(x_1, Q^2) f_g(x_2, Q^2) \hat{\sigma}_{qg \rightarrow qg}$$

Comparing Data to Theory

Detector Level

- Cluster energy depositions in the calorimeter into jets, using a **Jet Algorithm**.
- Correct for detector resolution and efficiency
- Correct for additional energy depositions due to minimum bias interactions, pile-up, uranium noise,...

Hadron Level

- Monte Carlo: Cluster stable particles into jet, using jet finding algorithm
- Data: Correct for difference between MC particle jets and calorimeter jets

Parton Level

- apply fragmentation effects to particle level jets
- apply corrections for underlying event (soft initial and final state gluon radiation, beam remnant interactions)

Measurement = PDF \oplus ME \oplus underlying event \oplus hadronization \oplus jet algorithm

Jet Algorithms

- Final state partons manifest themselves through collimated sprays of hadrons called jets.
- Jet finding algorithms define and identify jets.
- Different jet algorithms correspond to different observables and give different results.
- Clustering based on MC particles or calorimeter towers
- Jets must be defined consistently when comparing theory with observation!

D0: Run II Midpoint (Cone) Alg.

- Cluster according to proximity in y-φ-plane
- Infrared safe ("midpoint")
- Merging/splitting of jets governed by parameter

K_T Algorithm

- Cluster according to relative p_T
- Infrared and collinear save
- No merging/splitting of jets

- Some fundamental concepts
- Inclusive jet cross section
- Inclusive isolated photon (y) cross section
- Heavy flavor production
- Z + jets measurements
- Summary

Inclusive Jet Production

- Inclusive jet cross section counts all jets:
 5 jets in event → 5 entries in cross section plot.
- High p_T cross section is expected to be dominated by quark-quark (qq) interactions. However, qg+gg fraction not negligible
- Gluon Parton Density Function (PDF) not well known for large x. Increased Tevatron luminosity extends reach towards higher x

Inclusive Jet Cross Section

- Shape comparison only! Theory normalized to |y|<0.4 data at 100 GeV
- DØ has not evaluated the luminosity of the data sample yet

- RunII midpoint cone algorithm, L=0.8 fb-1
- Measurement in two rapidity regions
- Data in good agreement with NLO pQCD calculation (incl. threshold 2-loop corrections)

 Data corrected back to hadron-level by unsmearing correction (fitting an ansatz function to the observed p_T spectrum)

Systematic Uncertainties

- Systematic uncertainty is dominated by the statistical jet energy scale uncertainty
- Used only 150 pb⁻¹ of data to determine jet energy scale
- Once the jet energy scale is evaluated using the full 1 fb-1 data sample, the systematic uncertainty will improve significantly!

Data vs Theory

- Data is compared to theory at "hadron-level", need to correct pQCD calculation for hadronization and underlying event effects.
- Phenomenological model of hadronization and underlying event needs to be tested in independent measurement (Pythia "Tune A")

Constraining the gluon PDF

- New Physics expected in central region but not in forward region
- Possible discrepancy in forward region can be attributed to PDF

 Dominant PDF uncertainty comes from *gluon* part at large x, which is poorly known

- Forward data is useful in constraining PDFs!
- Experimental uncertainties are comparable to PDF uncertainties.
- Measurement with updated jet energy scale will place further constraint on PDF!

Comparison of PDFs

- Not sensitive enough to decide on favorite PDF
- Trend at high p_T uncorrelated, dominated by statistical jet energy scale uncertainty!

- Some fundamental concepts
- Inclusive jet cross section
- Inclusive isolated photon (y) cross section
- Heavy flavor production
- Z + jets measurements
- Summary

Inclusive y cross section

- Sensitive to PDF & hard scatter dynamics
- No need to define jets
- Separating photons from jet background is challanging

- Employ Artificial Neural Net to separate photons from jets and electrons
- Uses tracker and calorimeter isolation and showershape variables as input
- No Jet Energy Scale error (EM scale well understood), purity uncertainty dominates

Inclusive y cross section

 NLO pQCD calculation (JETPHOX) agrees well with data

- Errors are still of the order of 20%
- Promising to constrain the gluon
 PDF at high x with 1fb-1

- Some fundamental concepts
- Inclusive jet cross section
- Inclusive isolated photon (y) cross section
- Heavy flavor production
- Z + jets measurements
- Summary

b-jet Identification

- QCD heavy flavor production is important background in many top-quark, Higgs and New Physics analyses
- b-jets are detected ("tagged") by identifying a B-hadron within the jet-cone
- Two main techniques to identify B-hadrons within a jet

Lifetime tagging

 long B-hadron lifetime (cτ≈450µm) results in secondary decay vertex

Soft lepton tagging

- heavy flavor hadrons decay to lighter hadrons
- use decay product for identification

μ-tagged jet cross section

- L≈300 pb⁻¹, |Y|<0.5, Run II Midpoint Cone (R_{cone}=0.5)
- Heavy flavor identification by soft μ-tagging
- Heavy flavor (b/c) fraction in μ-tagged jets estimated using simulated events, assign 20% uncertainty to estimation

- Data lies between Pythia and NLO prediction
- "NLO μ-tag": NLOJET++ prediction times heavy flavor fraction determined using Pythia

Pt (Gev/C)

- Some fundamental concepts
- Inclusive jet cross section
- Inclusive isolated photon (y) cross section
- Heavy flavor production
- Z + jets measurements
- Summary

EW Boson + jets production

- Key sample to test LO and NLO ME+PS predictions
- Important background to top and new physics analyses
- Precise understanding important to estimate sensitivity, example SUSY discovery at ATLAS

Z+jets production

$$Z/\gamma^* \rightarrow e^+e^- + jets$$

- $\sigma(Z+jets) \approx \sigma(W+jets) / 10$, but cleaner sample
- Mass constraint 75 GeV < M_{ee} <105 GeV
- Run II Midpoint Cone jet algorithm, R=0.5
- Jet requirements: pT>20 GeV, $|\eta|<2.5$

- MCFM: NLO calculation for Z + up to 2 partons. Good description of the measured cross sections.
- ME-PS: MADGRAPH for tree level and PYTHIA for showering. Shape of jet multiplicity and p_T distributions well reproduced.
- PYTHIA: Too few events with high jet multiplicity.

SHERPA vs. PYTHIA

 $Z/\gamma^* \rightarrow e^+e^- + jets$

$L=950 pb^{-1}$

- Inclusive study of jets recoiling against the Z boson.
- Pythia tends to underestimate high p_T jets, especially at high jet multiplicities.
- Sherpa describes data well up to four jets.

 PYTHIA predicts a factor of ~1.7 less events than seen in data, shape OK within uncertainties.

Z + b-jet production

- Sensitive to b-quark PDF in the proton
- Important to predict production of particles coupling strongly to heavy flavor (i.e. Higgs, single top, ...)
- Important test of background to Standard Model Higgs production ZH→Zbb
- Select $Z \rightarrow e^+e^-/\mu^+\mu^-$ using mass constraint
- Cone jet algorithm, R=0.7, jet E_T >20 GeV, $|\eta_{iet}|$ <2.5
- b-tagging using secondary vertex reconstruction

Z + b-jet production

- $L = 180 \text{ pb}^{-1}$
- Measuring the ratio of b to normal jets avoids the 6.5% luminosity uncertainty

• Assume theoretical value $N_c = 1.96 N_b$

$$\sigma(p\bar{p} \rightarrow Z + b \text{ jet})/\sigma(p\bar{p} \rightarrow Z + \text{ jet}) = 0.021 \pm 0.004(\text{stat})^{+0.002}_{-0.003}(\text{syst})$$

- $L = 330 \text{ pb}^{-1}$
- Use secondary vertex mass to estimate true b-fraction in sample

$Cone0.7, E_T^{ ext{jet}} > 20 ext{GeV}, \eta^{ ext{jet}} < 1.5,$	CDF RUNII	PYTHIA TuneA	NLO	NLO with
$\sqrt{s} = 1.96 {\rm TeV}, L \sim 335 {\rm pb}^{-1}$	PreliminaryData	(CTEQ5L)	J. Campbell	Had, UE
$\sigma(Z^0 + b \text{jet})$	$0.96 \pm 0.32 \pm 0.14\mathrm{pb}$	0.83 pb	$0.48\mathrm{pb}$	$0.52\mathrm{pb}$
$\sigma(Z^0 + b \operatorname{jet}) / \sigma(Z^0)$	$0.0038 \pm 0.0012 \pm 0.0005$	0.0034	0.0019	0.0021
$\sigma(Z^0 + b \text{jet}) / \sigma(Z^0 + \text{jet})$	$0.0237 \pm 0.0078 \pm 0.0033$	0.0207	0.0185	0.0185

- Dominant systematic uncertainty for both analyzes is jet energy scale.
- Good agreement between the measurements and with theoretical prediction.

- Some fundamental concepts
- Inclusive jet cross section
- Inclusive isolated photon (y) cross section
- Heavy flavor production
- Z + jets measurements
- Summary

Summary

QCD measurements are an active field at the Tevatron

Inclusive jet production is tested at the Tevatron to high precision

- Good agreement with pQCD predictions
- Covers 9 orders of magnitude in cross section
- Input to global PDF fits

Jets in association with vector boson

- Important background for many searches beyond the Standard Model
- Testing ground for Monte Carlo tools: NLO calculations, ME+PS matching, etc....
- Latest tools describe data well
- Important input to the LHC

Analyzes will improve with more luminosity, more to come from the Tevatron soon!