New Results on Hyperons from NA48/1

Matthias Behler

Johannes Gutenberg-Universität, Mainz, Germany (on behalf of the NA48/1 collaboration)

Crimea 2006 NEW TRENDS IN HIGH-ENERGY PHYSICS, 16 – 23 Sept. 2006

Hyperons

Hyperons – Why?

Hyperon decays are under investigations since more than 50 years.

Why are they still interesting ?

All interactions (e.m., weak, strong) are involved in hyperon decays ⇒ Hyperons are a powerful tool to test models

- A lot of their features are still not understood, e.g.
 - Decay asymmetries of non-leptonic and radiative decays
 - Polarization at production in nucleon-nucleon-collisions
- Semileptonic decays allow determination of $|V_{us}|$ \Rightarrow Check $|V_{us}|$ from kaon decays
- For the first time large data samples (O(10⁴) events) of semileptonic and radiative Ξ⁰ decays are available (KTeV and NA48) ⇒ Precise measurements

Hyperons ... still interesting!

Outline

The NA48 experiment

Hyperons at NA48/1

 \blacksquare Ξ^0 Lifetime

Decay asymmetries of $\Xi^0 \to \Lambda \gamma$ and $\Xi^0 \to \Sigma^0 \gamma$

Branching ratios of semileptonic decays and $|V_{us}|$

Conclusions

The NA48 Experiment

The NA48 Experiments

The NA48/1 Experiment in 2002

- 80 days data taking with $\sim 200 \times$ intensity of ε'/ε runs
- Neutral beam: mainly kaons and hyperons (Ξ^0 and Λ)
- **Total flux:** $3.5 \cdot 10^{10} K_S$ and $2.4 \cdot 10^9 \Xi^0$ in decay region
- **Production angle:** $-4.2 \text{ mrad} \Rightarrow \text{polarized hyperons!}$ (~ 10% polarization)

The NA48 Detector

Magnet spectrometer

with 4 drift chambers $\frac{\sigma(p)}{p} = 0.48\% \oplus 0.015p ~~(p \text{ in GeV/c})$

Liquid Krypton Calorimeter

with $\sim 13300~{\rm cells}$ $\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\%~~(E~{\rm in~GeV})$

Scintillator hodoscope

 $\sigma(t)\approx 200~{\rm ps}$

Hyperon Decays at NA48/1

Only the neutral hyperons Ξ^0 and Λ can reach the decay region $(\tau_{\Xi^0}, \tau_{\Lambda} \approx \tau_{K_S})$

decay	events	analyses (presented here)			
Non-leptonic and radiative Ξ^0 decays:					
$\Xi^0 \to \Lambda \pi^0$	$3 \cdot 10^6$	lifetime, mass, decay asymmetry			
$\Xi^0 ightarrow \Lambda \gamma$	$44 \cdot 10^3$	BR, decay asymmetry			
$\Xi^0 ightarrow \Sigma^0 \gamma$	$13 \cdot 10^3$	BR, decay asymmetry			
Semileptonic Ξ^0 decays:					
$\Xi^0 \to \Sigma^+ e^- \overline{\nu}_e$	$6.2 \cdot 10^{3}$	BR, form factors			
$\Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_\mu$	99	BR			
Rare Ξ^0 decays:					
$\Xi^0 \to \Lambda e^+ e^-$	$O(10^2)$	first measurement			
$\Xi^0 \to p \pi^-$?	search			

Typical signature of hyperon decays

Non-leptonic and radiative Ξ^0 decays:

$$- \Xi^0 \rightarrow \Lambda \pi^0$$
 with $\pi^0 \rightarrow \gamma \gamma$ $\left. \right\} =$

- $\ \Xi^0 \to \Lambda \gamma$
- $\Xi^0 \to \Sigma^0 \gamma$ with $\Sigma^0 \to \Lambda \gamma$

always one Λ and one or two photons

- photon = cluster in LKr without associated track in spectrometer
- Λ is identified via the decay $\Lambda \rightarrow p\pi^-$

Semileptonic Ξ^0 decays:

$$\begin{array}{c} - & \Xi^0 \to \Sigma^+ e^- \overline{\nu}_e \\ - & \Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_\mu \end{array} \end{array} \right\} \Rightarrow \quad \text{always one } \Sigma^+ \text{ and a charged lepton}$$

• Σ^+ is identified via the decay $\Sigma^+ \to p\pi^0$ and $\pi^0 \to \gamma\gamma$

All decays: 2 charged particles (spectrometer) + 1 or 2 photons (LKr)

Reconstruction of Hyperon Decays

- Reconstruction of $\Lambda \to p\pi^-$ (mass, decay vertex, line of flight, ...) is straightforward due to known momenta $\vec{p_p}$, $\vec{p_{\pi^-}}$ from spectrometer
- Photons: only energies and positions in LKr are known
- \Rightarrow Reconstruction of Ξ^0 decay:

- $\blacksquare \Xi^0 + \Lambda \text{ line of flight} \Rightarrow \Xi^0 \text{ decay vertex}$
- \blacksquare Ξ^0 decay vertex + positions in LKr \Rightarrow full momenta \vec{p}_{γ}

New Results on Hyperons from NA48/1, Matthias Behler, Crimea 2006 - p. 12

LKr

Ξ^0 Lifetime

Ξ^0 Lifetime – Motivation

Motivation:

- Last and best measurement 1977 with 6300 events.
 - ⇒ Current accuracy only 3%

(PDG average $\tau_{\Xi^0, PDG} = (2.90 \pm 0.09) \cdot 10^{-10}$ s)

- Direct input for other measurements:
 e.g. |V_{us}| from semilep. Ξ⁰ decays
- Indirect input for all Ξ^0 measurements :
 - e.g. detector simulation

⇒ Better measurement needed

Ξ^0 Lifetime – Measurement

NA48/1 Measurement:

- Minimum bias trigger (very efficient: $\varepsilon_{L1} = (99.56 \pm 0.02)\%$, but down scaled)
- $\sim 260,000 \ \Xi^0 \rightarrow \Lambda \pi^0$ decays with $\lesssim 0.1\%$ background
- Analysis in 10 energy bins, simultaneous fit to all energy bins
- Fit region well separated from final collimator

Ξ^0 Lifetime – Fit

• MC with $\tau_{PDG} = (2.90 \pm 0.09) \cdot 10^{-10}$ s is used for the fit:

Ξ^0 Lifetime – Systematic Checks

Several systematic checks were performed:

10 single fits are in good agreement with the global fit:

Source	$\Delta_{syst}/\tau_{PDG}(\%)$		
Detector acceptance	± 0.30		
Vertex resolution	± 0.08		
Energy scale	± 0.14		
Energy non-linearities	± 0.09		
Ξ^0 polarization	± 0.15		
Ξ^0 mass	± 0.20		
Λ lifetime	± 0.04		
Total systematics	± 0.43		
Statistical uncertainty	± 0.44		

Ξ^0 Lifetime – Result

$\sim 2\sigma$ above the PDG average

$\mathbf{5} \times \mathbf{smaller} \ \mathbf{uncertainty}$

Decay Asymmetries

Decay Asymmetry

Decay asymmetry α :

- Two possible final states allowed for non-leptonic and radiative hyperon decays: a s-wave (l = 0) and a p-wave (l = 1)
 - Decays asymmetry due to interference of both amplitudes A_s and A_p:

$$\alpha = \frac{2\Re(A_s A_p^*)}{|A_s|^2 + |A_p|^2}$$

Angular distribution :

$$\frac{dN}{d\cos\Theta} \propto 1 + \alpha \vec{P} \cdot \vec{n} = 1 + \alpha |\vec{P}| \cos\Theta$$

 \vec{P} : initial polarization, \vec{n} : outgoing baryon direction

Decay Asymmetry – Theory

- First prediction of decay asymmetries for radiative decays by Hara (Hara-theorem, 1964)
 - α of $\Sigma^+ \to p\gamma$ and $\Xi^- \to \Sigma^- \gamma$ should vanish in exact $SU(3)_f$

• Measured: $\alpha_{\Sigma^+ \rightarrow p\gamma} = -0.76 \pm 0.08$ [PDG])

- ⇒ Conflict between Hara-theorem and experimental data unsolved
- Many theoretical models: pole-models, quark-models, VMD, ...
- But none can explain all decays (BR, asymmetries) simultaneously

Sign of α	$\Sigma^+ \to p\gamma$	$\Lambda o n\gamma$	$\Xi^0 ightarrow \Lambda \gamma$	$\Xi^0 \to \Sigma^0 \gamma$
Pole models	—	_	—	_
Quark models, VMD	—	+	+	—

\blacksquare $\Xi^{0} \rightarrow \Lambda \gamma$ asymmetry provides a good test

Decay Asymmetry – $\Xi^0 \rightarrow \Lambda \gamma$

Could use $\frac{dN}{d\cos\Theta} \propto 1 + \alpha |\vec{P}| \cos\Theta$ to measure the asymmetry α but the Ξ^0 polarization is small (~ 10%)

• More sensitivity using the Ξ^0 and Λ decay:

\Rightarrow For $\Xi^0 \rightarrow \Lambda \gamma$:

In the Λ rest frame the Λ is polarized by the Ξ^0 asymmetry : $\vec{P}_{\Lambda} = \alpha_{\Xi^0} \vec{n}_{\Xi^0}$

Decay Asymmetry – $\Xi^0 \rightarrow \Lambda \gamma$ **Result**

43814 $\Xi^{0} \rightarrow \Lambda \gamma$ candidates with 0.8% background:

New Results on Hyperons from NA48/1, Matthias Behler, Crimea 2006 – p. 23

Decay Asymmetry – $\Xi^0 \rightarrow \Sigma^0 \gamma$

- \Rightarrow For $\Xi^{0} \rightarrow \Sigma^{0} \gamma$:
 - Same method as for $\Xi^0 \to \Lambda \gamma$, but one additional decay: $\Sigma^0 \to \Lambda \gamma$

 \Rightarrow Two decay angles to describe the full cascade:

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\cos\Theta_{\Xi\Lambda}\,\mathrm{d}\cos\Theta_{\Sigma p}} \propto 1 + \alpha_{\Xi^0 \to \Sigma^0 \gamma} \alpha_{\Lambda \to p\pi^-} \cos\Theta_{\Xi\Lambda} \cos\Theta_{\Sigma p}$$

Decay Asymmetry – $\Xi^0 \rightarrow \Sigma^0 \gamma$ **Result**

• 13068 $\Xi^{0} ightarrow \Sigma^{0} \gamma$ candidates with pprox 3% background:

(KTeV, 2001, with 4045 events: $\alpha_{\Xi^0 \to \Sigma^0 \gamma} = -0.63 \pm 0.09$)

Decay Asymmetry – $\Xi^0 \rightarrow \Lambda \pi^0$

Important cross check for systematic uncertainties:

• Measurement of the well known $\Xi^0 \to \Lambda \pi^0$ asymmetry ($\alpha_{\Xi^0 \to \Lambda \pi^0} = -0.411 \pm 0.022$ [PDG])

■ $3 \cdot 10^6 \equiv^0 \rightarrow \Lambda \pi^0$ candidates with 0.1% background:

• Angular distribution (similar to $\Xi^0 \rightarrow \Lambda \gamma$): 10²

$$rac{dN}{d\cos\Theta} \propto 1 + lpha_\Lambda lpha_{\Xi^0} \cos\Theta_\Lambda$$

Fit:

$$\alpha_{\Xi^{0} \to \Lambda \pi^{0}} \cdot \alpha_{\Lambda \to p \pi^{-}} = -0.282 \pm 0.003_{stat} \pm 0.028_{sys}$$

$$\overset{\text{NA48 preliminary}}{\longrightarrow} \alpha_{\Xi^{0} \to \Lambda \pi^{0}} = -0.439 \pm 0.004_{stat} \pm 0.045_{syst}$$

New Results on Hyperons from NA48/1, Matthias Behler, Crimea 2006 - p. 26

Decay Asymmetries – Systematic Checks

Other checks and uncertainties:

	$\Delta(\alpha_{\Xi}\alpha_{\Lambda})$		
	$\Xi ightarrow \Lambda \gamma$	$\Xi ightarrow \Sigma^0 \gamma$	$\Xi ightarrow \Lambda \pi^0$
Trigger eff.	0.016	0.024	0.001
Ξ^0 polarization			0.002
Detector geometry / selection	0.021	0.021	0.012
Ξ^0 energy dependence	0.025	0.025	0.025
Ξ^0 mass	0.011	0.004	0.005
Ξ^0 lifetime	0.001	0.007	0.003
$\Lambda\pi^0$ background	0.001		
Total systematics	0.038	0.041	0.028
Statistical error (data+MC)	0.013	0.020	0.003

Semileptonic Decays

Semileptonic Decays

 $\Xi^0 \to \Sigma^+ e^- \overline{\nu}_e \text{ decay similar to neutron} \\ \beta \text{-decay } (SU(3)_f)$

 \Rightarrow Check $SU(3)_f$ breaking

Semileptonic decay allows determination of $|V_{us}|$ \Rightarrow Decay rate

$$\begin{split} \Gamma &= \frac{BR(\Xi^0 \to \Sigma^+ e^- \overline{\nu}_e)}{\tau_{\Xi^0}} \approx G_F^2 |V_{us}|^2 \frac{\Delta m^5}{60\pi^3} [(1 - \frac{3}{2}\beta)(|f_1|^2 - 3|g_1|^2)] \\ (\Delta m &= m_{\Xi^0} - m_{\Sigma^0}, \beta = \frac{\Delta m}{m_{\Xi^0}}) \end{split}$$

Semileptonic Decays – $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e$

Identification of semileptonic decays via $\Sigma^+ \rightarrow p\pi^0$ and a charged lepton

 $\blacksquare \Xi^{0}
ightarrow \Sigma^{+} \mathrm{e}^{-} \overline{\nu}_{\mathrm{e}}$:

- 6238 candidates with 2.4% background
- Normalization channel: $\Xi^0 \rightarrow \Lambda \pi^0$

 \Rightarrow

 $BR(\Xi^0 \to \Sigma^+ e^- \overline{\nu}_e) = (2.51 \pm 0.03_{stat} \pm 0.11_{syst}) \cdot 10^{-4}$

(KTeV, 1999, with 176 events: $BR(\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e) = (2.7 \pm 0.4) \cdot 10^{-4}$)

Semileptonic Decays – $|V_{us}|$

Systematic uncertainties dominated by form factor $\frac{g_1}{f_1} = 1.32^{+0.21}_{-0.17} \pm 0.05$

(from kaon decays [PDG]: $|V_{us}| = 0.2257 \pm 0.0021$)

Semileptonic Decays – $\Xi^0 \rightarrow \Sigma^+ \mu^- \overline{\nu}_{\mu}$

(KTeV, 2005, with 9 events: $BR(\Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_{\mu}) = (4.9^{+2.1}_{-1.6}) \cdot 10^{-6}$)

Conclusions

Decay asymmetries of $\Xi^0 \to \Lambda \gamma$ and $\Xi^0 \to \Sigma^0 \gamma$:

$$\alpha_{\Xi^0 \to \Lambda\gamma} = -0.684 \pm 0.020_{stat} \pm 0.061_{syst}$$

$$\alpha_{\Xi^0 \to \Sigma^0 \gamma} = -0.682 \pm 0.031_{stat} \pm 0.065_{syst}$$

 \blacksquare Ξ^0 lifetime:

$$au_{\Xi^0} = (3.082 \pm 0.013_{stat} \pm 0.012_{syst}) \cdot 10^{-10}$$
 s.

Branching ratios of semileptonic Ξ^0 decays:

$$BR(\Xi^0 \to \Sigma^+ e^- \overline{\nu}_e) = (2.51 \pm 0.03_{stat} \pm 0.11_{syst}) \cdot 10^{-4}$$

$$BR(\Xi^0 \to \Sigma^+ \mu^- \overline{\nu}_{\mu}) = (2.2 \pm 0.3_{stat} \pm 0.2_{syst}) \cdot 10^{-6}$$

Several other measurements are in progress