Quasiparticle Approach to Gluon Plasma Equation of State

V.V. Begun, M.I. Gorenstein, and O.A. Mogilevsky

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

F. Karsch, et al, Phys. Lett. B 478 (2000) 447.

$$N_{\tau}=4,6,8; \qquad N_{\sigma} \rightarrow \infty$$

QUASIPARTICLE MODELS

$$E^2(k) = k^2 + m^2(T)$$

$$P(T) = \frac{d}{6\pi^2} \int_0^\infty dk f_B(E) \frac{k^4}{E} - B(T)$$

where $d = 2(N_c^2 - 1)$ is the gluon degeneracy factor and

$$f_B(E) = \frac{1}{\exp(E/T) - 1}$$

The energy density ε and the entropy density s are equal to:

$$\varepsilon(T) = \frac{d}{2\pi^2} \int_0^\infty dk k^2 f_B(E) E + B(T)$$

$$s(T) = \frac{d}{2\pi^2 T} \int_0^\infty dk k^2 f_B(E) \frac{(4/3)k^2 + m^2}{E}$$

Selfconsistent requirement

$$\varepsilon = T \frac{dP}{dT} - P$$

$$B(T) = B(T_0) + \int_{T_0}^T dT' \frac{dm(T')}{dT'} \frac{\partial P_{id}(m, T')}{\partial m}$$

M.I.G., Shin Nan Yang. Phys. Rev. D52, 5206 (1995)

The general solution of the thermodynamical identity has the form:

$$P(T) = T \left[\int \varepsilon(T) \frac{dT}{T^2} + C \right]$$

M.I.G., O.A. Mogilevsky, Z. fur Phys. 38, 161 (1988)

Here C is an integration constant. The P(T) contains more information on the system than $\varepsilon(T)$.

$$\Delta \equiv \varepsilon - 3P$$

QUASIPARTICLE MODEL WITH m = aT

$$P = P_{id} - B(T) - A \cdot T$$

$$\varepsilon = \varepsilon_{id} + B(T)$$

where

$$P_{id} = \frac{dT^4}{2\pi^2} \sum_{n=1}^{\infty} \frac{a^2}{n^2} K_2(na)$$

$$\varepsilon_{id} = \frac{dT^4}{2\pi^2} \sum_{n=1}^{\infty} \frac{a^3}{n} [K_1(na) + 3K_2(na)/na]$$

For m = aT the function B(T) is exactly calculated

$$B(T) = B_0 - \frac{1}{4}\Delta_{id}$$
, $\Delta_{id} \equiv \varepsilon_{id} - 3P_{id}$

Then

$$P = \frac{1}{3}\sigma T^4 - B_0 - A \cdot T$$

$$\varepsilon = \sigma T^4 + B_0$$

$$\Delta = \varepsilon - 3P = 4B_0 + 3A \cdot T$$

where

$$\sigma = \frac{3d}{2\pi^2} \sum_{n=1}^{\infty} \left[\frac{a^2 K_2(na)}{n^2} + \frac{1}{4} \frac{a^3 K_1(na)}{n} \right]$$

The system behaves like ideal gas of massless particles with $\sigma < \sigma_{\rm SB} = 2(N_c^2-1)\frac{\pi^2}{30}$.

Comparison with result of lattice calculations gives

$$B_0 = -(2.49 \pm 0.08)T_c^4$$

 $A = (4.07 \pm 0.09)T_c^3$
 $a = 0.87$

Conclusions:

- 1) At high T the A and B_0 constants become unimportant. The linear relation m=aT seems to be unavoidable and leads to quasi-SB gas with $\sigma<\sigma_{SB}$.
- 2) At T close to T_c different quasi-particle descriptions are possible. At m=aT the bag constant B_0 is negative.
- 3) QCD lattice data for other observables should be analyzed.