A Survey of the Rare Pion and Muon decays

Maxim A. Bychkov University of Virginia

- About Us and Our Physics Goals
- Apparatus and Method
- Results

Crimea 2006 19 Sept 2006

Current PIBETA collaboration members: V. A. Baranov,^c W. Bertl,^b M. Bychkov,^a Yu.M. Bystritsky,^c E. Frlež,^a N.V. Khomutov,^c A.S. Korenchenko,^c M. Korolija,^f T. Kozlowski,^d N.P. Kravchuk,^c N.A. Kuchinsky,^c D. Mzhavia,^{c,e} A. Palladino,^a D. Počanić,^a P. Robmann,^g O.A. Rondon-Aramayo,^a A.M. Rozhdestvensky,^c T. Sakhelashvili,^b S. Scheu,^g V.V. Sidorkin,^c L.C. Smith,^a U. Straumann,^g I. Supek,^f Z. Tsamalaidze,^e A. van der Schaaf,^g B. A. VanDevender,^a E.P. Velicheva,^c V.V. Volnykh,^c and Y. Wang^a ^aDept of Physics, Univ of Virginia, Charlottesville, USA ^bPaul Scherrer Institut, Villigen PSI, Switzerland ^cJoint Institute for Nuclear Research, Dubna, Russia ^dInstitute for Nuclear Studies, Swierk, Poland ^eIHEP, Tbilisi, State University, Tbilisi, Georgia ^fRudjer Bošković Institute, Zagreb, Croatia ^gUniversity of Zürich, Zürich, Switzerland

Physics Goals

We study rare decays of pions and muons:

Mode	Fraction $(\Gamma_j/\Gamma)\%$	Subsequently
$\pi^+ o \mu^+ u_\mu$	(99.98770 ± 0.00004)	$\mu^+ \to \mathrm{e}^+ \overline{\nu}_\mathrm{e} \nu_\mu ~(\approx 100\%)$
		$\mu^+ \to \mathrm{e}^+ \overline{\nu}_\mathrm{e} \nu_\mu \gamma \sim 10^{-3} (k)$
$\pi^+ \to \mu^+ \nu_\mu \gamma$	$\sim 10^{-4} \; (k)$	
$\pi^+ \to \mathrm{e}^+ \nu_\mathrm{e}$	$(1.230 \pm 0.004) \times 10^{-4}$	
$\pi^+ \to \mathrm{e}^+ \nu_\mathrm{e} \gamma$	$\sim 10^{-7} \; (k)$	
$\pi^+ \to \pi^0 \mathrm{e}^+ \nu_\mathrm{e}$	$(1.036 \pm 0.006) \times 10^{-8}$	$\pi^0 ightarrow 2\gamma~(98.8\%)$
		$\pi^0 \rightarrow e^+ e^- \gamma \ (1.2\%)$
$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$	$(3.2 \pm 0.5) \times 10^{-9}$	

Physics Goals

- Study β decay of the pion $\pi^+ \to \pi^0 e^+ \nu_e$
 - SM check related to CKM unitarity
- Study pion radiative decay $\pi^+ \rightarrow e^+ \nu_e \gamma$
 - Structure of the pion, check of the CVC hypothesis, deviations from V - A form of $\mathcal{L}_{\text{weak}}$
- Study muon radiative decay $\mu^+ \to e^+ \nu \overline{\nu} \gamma$
 - Precise test of the weak interaction, deviations from V A form of $\mathcal{L}_{\text{weak}}$
- Study nonradiative decay $\pi^+ \rightarrow e^+ \nu_e$
 - \circ electron-muon universality
 - \circ pseudoscaler coupling in \mathcal{L}_{weak}
 - massive neutrino

Experimental Method

- π^+ s are stopped in the active target and subsequently decay <u>at rest</u> in the lab.
- The beam veto suppresses events resulting from strong interactions in the degrader. It lasts 10 ns and is initiated by a π -stop signal.
- π -stop signal opens a 180 ns wide π -gate during which all events are collected.

• All pion decays normalized to $\pi^+ \to e^+ \nu_e$ decays and muon decays to $\mu^+ \to e^+ \nu \overline{\nu}$.

The PIBETA Apparatus:

Data Analysis: Method

In order to reduce the systematic uncertainties we use $\pi^+ \rightarrow e^+ \nu_e ~(\pi_{e2})$ decay for normalization:

$$\Gamma_{\rm decay}^{\rm exp} = \Gamma_{\pi_{\rm e2}} \cdot \frac{A_{\pi_{\rm e2}} \cdot N_{\rm decay}}{N_{\pi_{\rm e2}} \cdot A_{\rm decay}}$$

 $\Gamma_{\pi_{e^2}}$ is branching ratio of $\pi^+ \to e^+ \nu_e$ decay N_{decay} is the number of events detected for a given decay A_{decay} is the acceptance for the same decay

Pion Decay: $\pi^+ \rightarrow e^+ \nu_e ~(\pi_{e2})$

Available Results: $\pi^+ \rightarrow e^+ \nu_e$ Decay

Marciano and Sirlin, [PRL **71** (1993) 3629]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{\text{calc}} = (1.2352 \pm 0.0005) \times 10^{-4}$$

Decker and Finkemeier, [NP B 438 (1995) 17]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{\text{calc}} = (1.2356 \pm 0.0001) \times 10^{-4}$$

Experiment, world average (PDG 2006):

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{\rm exp} = (1.230 \pm 0.004) \times 10^{-4}$$

The Pion Beta Decay: $\pi^+ \rightarrow \pi^0 e^+ \nu_e ~(\pi_\beta)$

Theoretical Description: The Pion Beta Decay

 $\pi^{\pm} \to \pi^0 e^{\pm} \nu$: BR $\simeq 1 \times 10^{-8}$, pure vector trans.: $0^- \to 0^-$. Theoretical decay rate at tree level:

$$\frac{1}{\tau_0} = \frac{G_F^2 |V_{ud}|^2}{30\pi^3} \left(1 - \frac{\Delta}{2M_+}\right)^3 \Delta^5 f(\epsilon, \Delta)$$
$$= 0.40692 (22) |V_{ud}|^2 (s^{-1}) .$$

With radiative and loop corrections: $\frac{1}{\tau} = \frac{1}{\tau_0}(1+\delta)$, so that the branching ratio becomes:

$$BR(\pi\beta) = \frac{\tau_+}{\tau_0}(1+\delta) = 1.0593\,(6) \times 10^{-8}(1+\delta)|V_{ud}|^2$$

Experimental State of Things

Best result until recently: [McFarlane et al., PRD 32 (1985) 547.] $BR(\pi^+ \to \pi^0 e^+ \nu) = (1.026 \pm 0.039) \times 10^{-8}, \text{ (i.e., } \sim 4\%)$

Extracting $|V_{ud}|$ from pion β decay is very lucrative.

PIBETA Current Result for $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ Decay [PRL 93, 181803 (2004)]

 $B_{\pi\beta}^{\exp} = [1.040 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst})] \times 10^{-8} \,,$ $B_{\pi\beta}^{\exp} = [1.036 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst}) \pm 0.003 \,(\pi_{e2})] \times 10^{-8} \,,$

McFarlane et al. [PRD 1985]: $B = (1.026 \pm 0.039) \times 10^{-8}$

SM Prediction (PDG, 2004): $B = 1.038 - 1.041 \times 10^{-8}$ (90% C.L.) $(1.005 - 1.007 \times 10^{-8}$ excl. rad. corr.)

PDG 2004: $V_{ud} = 0.9738(5)$ PIBETA current: $V_{ud} = 0.9748(25)$ or $V_{ud} = 0.9728(30)$.

Theoretical Description: $\pi^+ \rightarrow e^+ \nu_e \gamma$ Decay

$$\begin{aligned} \frac{d^2\Gamma^{\text{theor}}}{dxdy} &= \frac{d^2\Gamma_{IB}}{dxdy} + \frac{d^2\Gamma_{SD}}{dxdy} + \frac{d^2\Gamma_{\text{int}}}{dxdy} = \frac{\alpha}{2\pi} \boxed{\Gamma_{\pi \to e\nu}} \bigg\{ IB(x,y) + \frac{m_{\pi}^2}{4m_e^2} \left(\frac{F_V}{f_{\pi}}\right)^2 \left[(1+\gamma)^2 SD^+(x,y) + (1-\gamma)^2 SD^-(x,y) \right] + \frac{F_V}{f_{\pi}} \left[(1+\gamma)SD^+_{\text{int}}(x,y) + (1-\gamma)SD^-_{\text{int}}(x,y) \right] \bigg\} ,\end{aligned}$$

where IB, SD^{\pm} , SD_{int}^{\pm} are analytical functions of $x \equiv 2E_{\gamma}/m_{\pi^+}$ and $y \equiv 2E_e/m_{\pi^+}$

 $F_A(a) = F_A(0)(1 + a \cdot (1 - x)^2)$ is the axial-vector form factor $F_V(a) = F_V(0)(1 + a \cdot (1 - x)^2)$ is the vector form factor $\gamma = F_A/F_V \sim$ pion polarizability $\alpha_{\rm E}$ Available Data on Pion Form Factors

$$|F_V| \stackrel{\text{cvc}}{=} \frac{1}{\alpha} \sqrt{\frac{2\hbar}{\pi \tau_{\pi^0} m_{\pi^0}}} = 0.0259(5)$$

•

$F_A \times 10^4$	reference
106 ± 60	Bolotov et al. (1990)
135 ± 16	Bay et al. (1986)
60 ± 30	Piilonen et al. (1986)
110 ± 30	Stetz et al. (1979)
116 ± 16	world average (PDG 2002)

Results of the SM fit

[Phys. Rev. Lett. **93**, 181804 (2004)]

Best-fit $\pi \to e\nu\gamma$ branching ratios obtained with: $F_V = 0.0259$ (fixed) and $F_A = 0.0115(4)$ (fit) $\chi^2/d.o.f. = 25.4.$

Radiative corrections are included in the calculations.

$E_{e^+}^{\min}$	E_{γ}^{\min}	$ heta_{e\gamma}^{\min}$	$B_{ m exp}$	$B_{ m the}$
(MeV)	(MeV)		$(\times 10^{-8})$	$(\times 10^{-8})$
50	50	_	2.71(5)	2.583(1)
10	50	40°	11.6(3)	14.34(1)
50	10	40°	39.1(13)	37.83(1)

 $\pi^+ \rightarrow e^+ \nu_e \gamma$: Data analyses 2004 AND 1999-2001 revisited

Preliminary Results of the combined analyses

 $F_A = 0.0115 \pm 0.0004$ '04 $F_A = 0.0106 \pm 0.0005$ '99 -' 01 $F_A = 0.0111 \pm 0.0003$ '99 -' 01^{A only} $a = 0.241 \pm 0.093$ $|F_T| < 5.1 \cdot 10^{-4}$ 90% CL

 $F_V = 0.0259$ CVC fixed

Carefull systematic checks remove the anomaly. Overall precision $\geq 5\times$

Preliminary Results and Comparison

Theoretical Description: $\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$ Decay

$$\frac{d^3\Gamma(x,y,\theta)}{dx\,dy\,2\pi\,d(\cos\theta)} = f_1(x,y,\theta) + \overline{\eta}f_2(x,y,\theta) + (1-\frac{4}{3}\rho)f_3(x,y,\theta)$$

where
$$f_i$$
s are polynomials in
 $x = 2E_{e^+}/m_{\mu}, \ y = 2E_{\gamma}/m_{\mu}, \ \cos\theta = \hat{p}_{e^+} \cdot \hat{p}_{\gamma} \text{ and } \Delta = 1 - \beta \cos\theta \text{ and}$
 $\rho = \frac{3}{4} - \frac{3}{4} \left[|g_{LR}^V|^2 + |g_{RL}^V|^2 + 2|g_{LR}^T|^2 + 2|g_{RL}^T|^2 + 8e(g_{RL}^S g_{RL}^{T*} + g_{LR}^S g_{LR}^{T*}) \right]$
 $\overline{\eta} = \left(|g_{RL}^V|^2 + |g_{LR}^V|^2 \right) + \frac{1}{8} \left(|g_{LR}^S + 2g_{LR}^T|^2 + |g_{RL}^S + 2g_{RL}^T|^2 \right) + 2\left(|g_{LR}^T|^2 + |g_{RL}^T|^2 + |g_{RL}^T|^2 \right).$

Available Data on Michel parameters

$$ho \stackrel{
m SM}{=} 3/4 \;,\; \overline{\eta} \stackrel{
m SM}{=} 0.$$

ρ	reference
0.7508 ± 0.0011	Musser et al. (2005)
0.7518 ± 0.0026	Derenzo et al. (1969)
0.7509 ± 0.0010	world average (PDG 2006)
$\overline{\eta}$	reference
-0.014 ± 0.090	Eichenberger et al. (1984)
0.09 ± 0.14	Bogart et. al. (1967)
0.02 ± 0.08	world average (PDG 2006)

Data Analysis: $\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$ [B. VanDevender]

$\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$ Differential Branching Ratio

 $B^{\text{exp}} = [4.40 \pm 0.02 \text{ (stat.)} \pm 0.09 \text{ (syst.)}] \times 10^{-3}$ $B^{\text{theo}} = 4.30 \times 10^{-3} (E_{\gamma} > 10 \text{ MeV}, \ \theta > 30^{\circ})$ $15 \times \text{ increase in accuracy}$

Final Results for $\overline{\eta}$ and ρ

data set	$\overline{\eta}$	ho
nine-piece target	-0.066 ± 0.070	0.750 ± 0.010
	-0.065 ± 0.065	0.75 (fixed)
one-piece target	-0.115 ± 0.085	0.751 ± 0.011
	-0.111 ± 0.077	0.75 (fixed)

Combined: $\bar{\eta} = -0.084 \pm 0.050$ (stat.) ± 0.034 (syst.)

 $\Rightarrow \overline{\eta} \leq 0.033 \ (68 \% \text{ c.l.}) \text{ or } \overline{\eta} \leq 0.060 \ (90 \% \text{ c.l.})$

Conclusions

- 1. In recent years the PIBETA collaboration has:
 - increased the world data set on π_{β} , $\pi_{e2\gamma}$, $\mu \to e\nu\bar{\nu}\gamma$ decays by ~ 2 orders of magnitude or more,
 - increased the precision of BR's of π_{β} , $\pi_{e2\gamma}$ decays $4 7 \times$,
 - resolved the $\pi_{e2\gamma}$ anomaly
 - obtained new values of the μ decay parameters $\bar{\eta}$ and ρ from the $\mu \to e\nu\bar{\nu}\gamma$ data
- 2. Other forthcoming developments:
 - PEN proposal π_{e2} BR with 0.05% precision accepted in '06 (R-05-01)
 - Combine all available data on $\pi_{e2\gamma}$. Dalitz version ?
 - PEN experiment will duplicate our '04 data, with yet lower backgrounds.

http://pibeta.phys.virginia.edu http://pen.phys.virginia.edu