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Introduction and outlook

• Meson spectral functions (MSF) in different channels are of interest

for the study of mesonic properties and behaviour in the deconfined

phase of QCD: the quark-gluon plasma. The survival of qq̄ bound

states above the critical temperature Tc may change the expected

pattern of mesonic spectra in the analysis of Relativistic Heavy Ion

collisions.

• MSF are explored with different techniques: effective models (e.g.

NJL, PNJL), lattice calculations, perturbative approaches, etc. The

Hard Thermal Loop (HTL) approximation, together with Next to

Leading corrections, is employed here to evaluate MSF, at

temperatures above Tc and zero chemical potential.



• The HTL approach is based on the separation of different momentum

scales:

⇒ Hard scale: k ∼ T , for plasma particles

⇒ Soft scale: k ∼ gT , for collective modes.

This separation strictly holds in weak coupling regime (g ≪ 1). At the

temperatures of present experimental interest (where g ∼ 1) this

separation could be less clear. Quark-gluon interaction (thermal

average) is of order gT , thus negligible for hard particles, but

comparable with kinetic term for soft particles: resummation is

needed, keeping only terms up to g2T 2.

• The HTL approximation reproduces quite well lattice data for the

thermodynamics of the QGP phase, at T ≥ 2.5Tc. Analogous test can

be performed for the MSF, since a direct comparison with

experimental data is not duable.



Thermal meson correlation functions from lattice data

Thermal meson propagator along the (imaginary) temporal direction:

GM (−iτ, p) =

Z +∞

0

dω σM (ω, p)
cosh(ω(τ − β/2))

sinh(ωβ/2)
.

where σM (ω, p) is the thermal meson spectral function.

• GM (−iτ, p = 0) is measured on the lattice for a finite set of values of τ

(∼ 20).

• σM (ω,0) has to be reconstructed (Maximum Entropy Method usually

employed).

Lattice Meson Spectral Functions above TC(T. Hatsuda, hep-lat/0509306

and references therein.)



ss̄ dimensionless spectral function at T = 1.38T/Tc. Peak position at

ω = 2.4m
(T=0)
φ .



Thermal meson correlation function

Consider the current operator, carrying the quantum numbers of a meson

(ΓM = 1, γ5, γµ, γµγ5 for the different channels):

JM (−iτ, x) = q̄(−iτ, x)ΓMq(−iτ, x) ,

and the fluctuation operator eJM (average over the grand canonical

ensemble):
eJM (−iτ, x) = JM (−iτ, x) − 〈JM (−iτ, x)〉 ,

Thermal meson 2 point correlation function

GM (−iτ, x) = 〈 eJM (−iτ, x) eJ†
M (0,0)〉

=
1

β

+∞X

n=−∞

Z
d3p

(2π)3
e−iωnτeip·xχM (iωn, p)

with τ ∈ [0, β = 1/T ] and ωn = 2nπT (n = 0,±1,±2 . . . ).



Spectral representation for the meson propagator in momentum space:

χM (iωn, p) = −
+∞Z

−∞

dω
σM (ω, p)

iωn − ω
⇒ σM (ω, p) =

1

π
Im χM (ω + iη,p).

σM being the corresponding spectral function.

Thermal meson propagator in mixed representation:

GM (−iτ, p) =
1

β

+∞X

n=−∞

e−iωnτχM (iωn, p) = − 1

β

+∞X

n=−∞

e−iωnτ

+∞Z

−∞

dω
σM (ω, p)

iωn − ω
,

sum over the Matsubara frequencies are performed with a standard

contour integration in the complex ω plane:

GM (−iτ, p) =

+∞Z

0

dω σM (ω, p)
cosh[ω(τ − β/2)]

sinh(ωβ/2)
≡

+∞Z

0

dω σM (ω, p)K(ω, τ).



Free spectral functions

In Fourier space the free mesonic 2 point correlation function reads

χM (iωl, p)=−2Nc
1

β

+∞X

n=−∞

Z
d3k

(2π)3
Tr[ΓMSF (iωn, k)γ0Γ†

Mγ0SF (iωn−iωl, k−p)],

where ωl = 2lπT (mesonic frequency), while ωn = (2n+1)πT ; 2Nc comes

from trace over light flavours and colours.

The spectral representation of free fermion propagator is

SF (iωn, p) = −
Z +∞

−∞

dp0
ρF (p0, p)

iωn − p0
.

with the spectral function

ρF (p) = ǫ(p0)(p/ + m)δ(p2 − m2)



The free mesonic spectral function (p = 0) is then

σfree
M (ω,0) =

Nc

4π2
θ(ω−2m)

s

1 −
„

2m

ω

«2

ω2 tanh(ω/4T )

 
a + b

„
2m

ω

«2
!

,

where (a, b) = (1,−1), (1, 0), (−2,−1), (−2, 3) in the scalar, pseudoscalar,

vector and pseudovector channels, respectively.



HTL spectral functions: quark propagator

HTL quark propagator (for quarks with soft momentum):

⋆S(ω, p) = ⋆∆+(ω, p)
γ0 − γ · p̂

2
+ ⋆∆−(ω, p)

γ0 + γ · p̂

2

with
⋆∆±(ω, p) =

−1

ω ∓ p − m2
q

2p

»„
1 ∓ ω

p

«
ln

ω + p

ω − p
± 2

– ,

quark thermal mass mq =g(T )T/
√

6,

g(T ) gauge running coupling evaluated at renormalization scale µ∼T .



Alternatively, by setting

⋆∆±(z, p) = −
+∞Z

−∞

dω
ρ±(ω, p)

z − ω
⇒ ρ±(ω, p) =

1

π
Im ⋆∆±(ω + iη, p) ,

the HTL quark propagator has the spectral representation:

⋆S(iωn, p) = −
+∞Z

−∞

dω
ρHTL(ω, p)

iωn − ω
,

with the HTL quark spectral function

ρHTL(ω, p) =
γ0 − γ · p̂

2
ρ+(ω, p) +

γ0 + γ · p̂

2
ρ−(ω, p) .

The explicit expression of the HTL quark spectral function reads

ρ±(ω, k) =
ω2 − k2

2m2
q

[δ(ω − ω±) + δ(ω + ω∓)] + β±(ω, k)θ(k2 − ω2)



with

β±(ω, k) = −m2
q

2

±ω − k
h
k(−ω ± k) + m2

q

“
±1 − ±ω−k

2k
ln k+ω

k−ω

”i2
+
ˆ

π
2
m2

q
±ω−k

k

˜2 .

HTL spectral function has two pieces:

• pole term in time-like domain ω > k

1. quasiparticle from ⋆∆−1
+ (ω+(k), k) = 0

with asymptotic behaviour for k ≫ mq:

ω+(k) ≃
p

k2 + m̂2
∞ m̂2

∞ = 2m2
q =

g2T 2

3

2. plasmino from ⋆∆−1
− (ω−(k), k) = 0

with asymptotic behaviour for k ≫ mq:

ω−(k) ≃ k + 2k exp

„
−2k2 + m2

q

m2
q

«

• a continuum term (β±) in space-like domain ω < k
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Dispersion relations corresponding to the quasiparticle poles of the HTL fermion

propagator in the time-like domain.
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Dimensionless (continuum) spectral function mq · β±(ω, k) for space-like

momenta at k = mq as a function of ω/mq . The maximum of β− stems from the

second zero of the function Re( ⋆∆−1
− ), occurring in the space-like region, but it

does not corresponds to a quasi-particle excitation.



HTL mesonic correlator in PS channel

The HTL approximation for the meson 2-point function in the

pseudoscalar channel, employs for the fermionic lines the HTL resummed

fermion propagators. NB: the pseudoscalar vertex has no HTL correction.

χps(iωl, p) = 2Nc
1

β

+∞X

n=−∞

Z
d3k

(2π)3
Tr[γ5 ⋆S(iωn, k)γ5 ⋆S(iωn− iωl, k − p)]

=2Nc
1

β

+∞X

n=−∞

Z
d3k

(2π)3

+∞Z

−∞

dω1

+∞Z

−∞

dω2
1

iωn − ω1

1

iωn − iωl − ω2
×

×Tr[γ5ρHTL(ω1, k)γ5ρHTL(ω2, q)]

with q = k − p.



Pseudoscalar meson spectral function

σps(ω, p) =2Nc

Z
d3k

(2π)3
(eβω − 1)

+∞Z

−∞

dω1

+∞Z

−∞

dω2ñ(ω1)ñ(ω2)δ(ω −ω1 −ω2) ×

×
n
(1 + k̂ · q̂)[ρ+(ω1, k)ρ+(ω2, q) + ρ−(ω1, k)ρ−(ω2, q)]+

+ (1 − k̂ · q̂)[ρ+(ω1, k)ρ−(ω2, q) + ρ−(ω1, k)ρ+(ω2, q)]
o

In the above ñ(ω) = [1 + eβω ]−1 is the Fermi distribution and the identity

ρ+(−ω, k) = ρ−(ω, k) has been used.



The case p = 0: beyond HTL

For p = 0 the above formula reduces to:

σps(ω,0) =
2Nc

π2
(eβω − 1)

Z +∞

0

dk k2

Z +∞

−∞

dω1

Z +∞

−∞

dω2ñ(ω1)ñ(ω2)

δ(ω − ω1 − ω2)[ρ+(ω1, k)ρ+(ω2, k) + ρ−(ω1, k)ρ−(ω2, k)] .

The fermionic momentum inside the spectral function is integrated over all

scale of momenta (hard and soft), but HTL approximation valid to dress

propagation of soft modes, not of hard ones.

In Next to Leading Approximation (NLA) the self energy of hard

quarks is corrected by the interaction with a soft gluon (HTL dressed),

longitudinal and transverse:



(a) (b)

Next to Leading corrections to a hard quark propagator, arising from the

interaction with a soft transverse (a) and longitudinal (b) gluon: for these HTL

resummed propagators are used. Two diagrams receive contributions from all

orders in perturbation theory.

NLA taken into account (approximately), with constant shift of the

asymptotic quark mass,

δm2
∞ = − 1

2π
g2 4

3
T m̂D



with Debye screening mass:

m̂D =

r
Nc

3
+

Nf

6
gT

Then

m2
∞ =

1

3
g2T 2 − 1

2π

4

3

r
Nc

3
+

Nf

6
g3 T 2

= m̂2
∞ − 2

3π

r
Nc +

Nf

2
g2 T m̂∞

Notice that g ≥ 1, hence this leads to unphysical negative mass values at

large T . Suggestion: take instead the positive root of the “self-consistent

like” equation: [Ref. Blaizot, Iancu et al.]

m2
NLA = m̂2

∞ − 2

3π
g2

r
Nc +

Nf

2
T mNLA

(⇒) right coefficients of the terms of order g3 to the entropy and baryon

density.



Strategy: fix an intermediate scale of momenta Λ =
√

2πTm̂D and

perform the integration over the fermionic loop (k) as follows

• For k < Λ keep full HTL description of quark propagator

• For k > Λ consider only physical modes (quarks and transverse gluons)

with the asymptotic mass mNLA.

Spectral representation for the NLA quark propagator

SNLA(iωn, k) = −
Z +∞

−∞

dω
ρNLA(ω, k)

iωn − ω
,

with

ρNLA(ω, k) =
γ0 − γ · k̂

2
ρNLA
+ (ω, k) +

γ0 + γ · k̂

2
ρNLA
− (ω, k).

Requirements for the NLA quark spectral function ρNLA
±

• for small momenta it reduces to the HTL one;

• for large momenta it yields a spectrum dominated by an undamped

excitation whose dispersion relation approaches ǫNLA
k =

p
k2 + m2

NLA,



• it obeys the “sum rule”
Z +∞

−∞

dω ρ±(ω, k) = 1

(stemming from equal-time anticommutation relations)

• the associated quark propagator anti-commutes with γ5.Indeed

chirality is not destroyed by thermal masses (gap mass mq and

asymptotic mass m∞) arising from interactions with thermal bath.

Then

ρNLA
± (ω, k) = θ(Λ − k)ρ±(ω, k) + θ(k − Λ)δ(ω ∓ ǫNLA

k )

Pseudo-scalar meson spectral function (for ω > 0, p = 0):

σps
NLA(ω,0) =

2Nc

π2
(eβω − 1)

Z +∞

0

dk k2

Z +∞

−∞

dω1

Z +∞

−∞

dω2ñ(ω1)ñ(ω2)

δ(ω−ω1−ω2)[ρ
NLA
+ (ω1, k)ρNLA

+ (ω2, k) + ρNLA
− (ω1, k)ρNLA

− (ω2, k)] .



More precisely...

To avoid overcounting of the same physical mode (in a small range around

Λ) and to interpolate smoothly between the soft and hard regimes we

introduce two additional cutoffs Λ1 and Λ2 defined as follows:

ω+(Λ1) =
q

Λ2 + m2
NLA

ω+(Λ) =
q

Λ2
2 + m2

NLA .

Leading to

ρNLA
± (ω, k) =

8
>><
>>:

ρ±(ω, k) if k < Λ1

cos2(α(k))ρ±(ω, k) + sin2(α(k))δ(ω ∓ ǫNLA
k ) if Λ1 < k < Λ2

δ(ω ∓ ǫNLA
k ) if k > Λ2

with

α(k) =
π

2
· k − Λ1

Λ2 − Λ1



Numerical Results

Results at p = 0

Different contributions to the HTL pseudoscalar spectral function:

σps
HTL(ω,0) = σpp(ω,0) + σpc(ω,0) + σcc(ω,0) .

• Pole-pole (pp)

σpp(ω) =
Nc

2π2

eβω − 1

m4
q

»
ñ2(ω+(k1))(ω

2
+(k1) − k2

1)
2 k2

1

2|ω′
+(k1)|

+

+2
X

k2

ñ(ω+(k2))[1−ñ(ω−(k2))](ω
2
+(k2)−k2

2)(ω
2
−(k2)−k2

2)
k2
2

|ω′
+(k2)−ω′

−(k2)|
+

+
X

k3

ñ2(ω−(k3))(ω
2
−(k3) − k2

3)2
k2
3

2|ω′
−(k3)|

3
5



It contains well defined physical processes:

1. annihilation of a normal quark (q+) anti-quark pair into a meson (M)

at rest

q+ + q̄+ −→ M ,

2. decay of a normal quark mode into a plasmino mode (q+) with same

momentum and a meson at rest

q+ −→ q− + M ,

3. annihilation of a plasmino anti-plasmino pair into a meson

q− + q̄− −→ M



• Pole-cut (pc)

σpc(ω) =
2Nc

π2

eβω − 1

m2
q

Z ∞

0

dk k2 ·

·
ˆ
θ(k2 − (ω − ω+)2)ñ(ω − ω+)ñ(ω+)β+(ω − ω+, k)(ω2

+ − k2)

+θ(k2 − (ω − ω−)2)ñ(ω − ω−)ñ(ω−)β−(ω − ω−, k)(ω2
− − k2)

˜
.

• Cut-cut (cc)

σcc(ω) =
2Nc

π2
(eβω − 1)

Z ∞

0

dk k2

Z +k

−k

dx ñ(x)ñ(ω − x)θ(k2 − (ω − x)2)·

· [β+(x, k)β+(ω − x, k) + β−(x, k)β−(ω − x, k)] .
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The various contributions (pole-pole, pole-cut and cut-cut) to the dimensionless

spectral function of a pseudoscalar meson σps/T 2 at P = 0 versus x = ω/T . HTL

approximation both for hard and soft momenta. T is such that g(T ) =
√

6, hence

mq = T . Peaks at ω/T ≃ 0.47 and 1.86 are the Van Hove singularities.
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Zero momentum pseudoscalar spectral function σps/T 2
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approximations: free result, HTL,NLA and quarks with a thermal mass mNLA.
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√
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Results at p 6= 0 (HTL approximation)

Much more cumbersome calculations,hence restricted to the pure HTL

approximation. In addition to the temporal correlator G(−iτ, p), one can

evaluate the z-axis correlator (also considered in lattice calculations)

G(z) ≡
βZ

0

dτ

Z
dx⊥χM (−iτ, x⊥ , z) =

+∞Z

−∞

dpz

2π
eipzz

Z +∞

−∞

dω
σ(ω, p⊥=0, pz)

ω

which requires the knowledge of the finite momentum meson spectral

function σ(ω, p).

Usually the conjecture that the spatial correlations are exponentially

suppressed at large z,

G(z) ∼
z→+∞

e−mscrz .

allows to extract informations on the nature of the excitations

characterizing the QGP phase.



0 0.2 0.4 0.6 0.8 1
τ/β

0.94

0.95

0.96

0.97

0.98

0.99

1

G
(τ

,p
 =

 1
) 

 /G
(τ

)fr
ee

T/Tc = 1
T/Tc = 2
T/Tc = 4
T/Tc = 10

The ratio GHTL(τ)/Gfree(τ) for different temperatures at p = 1 fm−1.



0 0.2 0.4 0.6 0.8 1
τ/β

0.97

0.975

0.98

0.985

0.99

0.995

1

G
(τ

,p
 =

 4
) 

 /G
(τ

)fr
ee

T/Tc = 1
T/Tc = 2
T/Tc = 4
T/Tc = 10

The ratio GHTL(τ)/Gfree(τ) for different temperatures at p = 4 fm−1.



Conclusions

• We have investigated pseudoscalar mesonic thermal spectral functions

in HTL approximation and (at zero momentum) in the NLA

framework

• Most striking feature of HTL spectral function is the appearence of

Van Hove singularities, well visible at p = 0 and T = 2Tc. They

survive with increasing temperature, but are rapidly washed out at

finite momenta.

• In the improved NLA treatment this features remain almost unaltered,

particularly at low energies. The detection of Van Hove singularities

would be a clear signature of deconfinement, being related to the

minimum of the (collective) plasmino mode.

• However:

- no evidence for sharp resonances in soft energy domain was found in



lattice MSF of light quarks

- the most interesting channel, for experiments, is the vector channel,

associated with dilepton production.

• Vector MSF can be evaluated in HTL, but pose some problems to

NLA, due to vertex corrections (identically zero in pseudoscalar

channel).

Notice that in the heavy quark vector meson sector the existence of

bound states above Tc has been suggested both by lattice calculations

and effective potential approaches.

• Work is in progress at finite momentum, in order to obtain the spatial

correlator.
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