The MEG experiment at PSI: search for the $\mu^+ \rightarrow e^+ \gamma$ decay

Giovanni Signorelli INFN Pisa and Pisa University (Italy) for the MEG collaboration

NEW TRENDS IN HIGH ENERGY PHYSICS

Ялта - Украина - September 16-23, 2006

.

Univ. of Tokyo Y. Hisamatsu, T. Iwamoto, S. Mihara, T. Mori, H. Natori, H. Nishiguchi, W. Ootani, R. Sawada, S. Yamashita, Y. Uchiyama **KEK** T. Haruyama, K. Kasami, A. Maki, Y. Makida, A. Yamamoto Waseda Univ. T. Doke, J. Kikuchi, S. Suzuki, K. Terasawa **INFN and University of Pisa** A. Baldini, C. Bemporad, F. Cei, M. Grassi, D. Nicolò, A. Papa, R. Pazzi, F. Sergiampietri, G. Signorelli **INFN and Univ. of Genova** S. Dussoni, F. Gatti, R. Valle **INFN and Univ. of Pavia** G. Boca, P. W. Cattaneo, G. Cecchet, A. De Bari, R. Nardò, M. Rossella **INFN and Univ. of Roma I** A. Barchiesi, D. Zanello **INFN and Univ. of Lecce** M. Panareo **Paul Scherrer Institute** J. Egger, M. Hildebrandt, P.-R. Kettle, S. Ritt, M. Schneebeli **BINP Novosibirsk** L. M. Barkov, A. A. Grebenuk, D. N. Grigoriev, B. I. Khazin, N. M. Ryskulov **JINR Dubna**

A. Korenchenko, N. Kravchuk, A. Moiseenko, D. Mzavia

Univ. of California, Irvine W. Molzon, M. Hebert, P. Huwe, J. Perry, V. Tumakov, F. Xiao, S. Yamada

• Physics motivation for a $\mu \to e\gamma$ experiment

 $\overline{10}$

- The $\mu
 ightarrow e \gamma$ decay
- The detector
 - Beam line & target
 - Spectrometer
 - Timing Counter
 - LXe calorimeter
 - Calibrations
 - Electronics
- Status
- Future

The SM. And beyond...

- The Standard Model is made of particles + interactions + symmetries
 - Phyisics symmetries
 - Gauge symmetries
 - Accidental symmetries

B	L	L_i
baryon	lepton	lepton family
number	number	number
$p ightarrow e^- \pi^0$	ν masses	$\mu ightarrow e \gamma$

- These symmetries are called accidental because there is no general rule that imposes them they just "happen" to be in the SM
- The research for the failure of one of these symmetries could shed new light on particle physics
- Three complementary searches to probe the Standard Model.

The $\mu \rightarrow e\gamma$ decay

- The $\mu \rightarrow e\gamma$ decay is forbidden in the SM because of the (accidental) conservation of lepton family numbers
- The introduction of neutrino masses and mixings induces $\mu \rightarrow e\gamma$ radiatively, but at a negligible level

• All <u>SM extensions enhance the rate</u> through mixing in the high energy sector of the theory

For instance... predictions

- SUSY SU(5) predictions: LFV induced by finite slepton mixing through radiative corrections. The mixing could be large due to the top-quark mass at a level of 10⁻¹² - 10⁻¹⁵
- SO(10) predicts even larger BR:
 - $m(\tau)/m(\mu)$ enhancement
- Models with right-handed neutrinos also predict large BR
- ⇒ clear evidence for physics beyond the SM.

R. Barbieri et al.,Nucl. Phys. B445(1995) 215 J.Hisano et al.,Phys. Lett. B391 (1997) 341 R. Ciafaloni, A. Romanino, A. Strumia, Nucl. Phys. B458 (1996)

J. Hisano, N. Nomura, Phys. Rev. D59 (1999)

Historical perspective

Each improvement linked to an improvement in the technology

The accidental background is dominant and it is determined by the experimental resolutions

Exp./Lab	Year	ΔEe/Ee (%)	ΔΕγ /Εγ (%)	Δteγ (ns)	Δθeγ (mrad)	Stop rate (s ⁻¹)	Duty cyc. (%)	BR (90% CL)
SIN	1977	8.7	9.3	I.4	-	5 X 105	100	3.6 x 10 ⁻⁹
TRIUMF	1977	IO	8.7	6.7	-	2 X IO ⁵	IOO	I X IO ⁻⁹
LANL	1979	8.8	8	1.9	37	2.4 X 10 ⁵	6.4	I.7 X IO ⁻¹⁰
Crystal Box	1986	8	8	I.3	87	4 x 10 ⁵	(69)	4.9 x 10 ⁻¹¹
MEGA	1999	I.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	$I.2 \times IO^{-II}$
MEG	2006	0.8	4	0.15	19	2.5 X 10 ⁷	IOO	I X IO ⁻¹³

FWHM 8

 E_{γ}

MEG experimental method

Easy signal selection with μ^+ at rest

- Stopped beam of >107 µ /sec in a
 150 µm target
- Y detection

Liquid Xenon calorimeter based on the scintillation light

- fast: 4 / 22 / 45 ns
- high LY: ~ 0.8 * NaI
- short X_0 : 2.77 cm

e⁺ detection

magnetic spectrometer composed by solenoidal magnet and drift chambers for momentum

scintillation counters for timing

COBRA spectrometer

Positron Tracker

- 16 chambers radially aligned with 10° intervals
- 2 staggered arrays of drift cells
- I signal wire and 2 x 2 vernier cathode strips made of 15 µm kapton foils and 0.45 µm aluminum strips
- Chamber gas: He-C₂H₆ mixture

transverse coordinate (t drift)

Measurements at Tokyo University:

 $\sigma_{R} = 93 \pm 10 \mu m$ $\sigma_{Z} = 425 \pm 7 \mu m$

Drift chambers

14

- Full scale test in November
- Summary of Drift Chamber simulation

FWHM

 $\delta P_{e^+} / P_{e^+} = 0.7 \div 0.9\%$ $\delta \theta_{e^+} = 9 \div 12 mrad$ $\delta x_{orig} = 2.1 \div 2.5 mm$

z Timing Counter

• Two layers of scintillators:

Outer layer, read out by PMTs: timing measurement Inner layer, read out with APDs at 90°: z-trigger

• Obtained goal σ_{time} 40 psec (100 ps FWHM)

Exp. application ^(*)	Counter size (cm) (T x W x L)	Scintillator	PMT	λ _{att} (cm)	<mark>σ</mark> t(meas)	σ _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

Timing Counter

• Two layers of scintillators:

Outer layer, read out by PMTs: timing measurement Inner layer, read out with APDs at 90°: z-trigger

• Obtained goal σ_{time} 40 psec (100 ps FWHM)

Exp. application ^(*)	Counter size (cm) (T x W x L)	Scintillator	PMT	λ _{att} (cm)	<mark>σ</mark> t(meas)	σ _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

The calorimeter

- γ Energy, position, timing
- Homogeneous 0.8 m³ volume of liquid Xe
 - 10 % solid angle
 - 65 < r < 112 cm
 - $|\cos\theta| < 0.35$ $|\phi| < 60^{\circ}$
- Only scintillation light
- Read by 848 PMT
 - 2" photo-multiplier tubes
 - Maximum coverage FF (6.2 cm cell)
 - Immersed in liquid Xe
 - Low temperature (165 K)
 - Quartz window (178 nm)
- Thin entrance wall
- Singularly applied HV
- Waveform digitizing @2 GHz
 - Pileup rejection

Liquid Xe properties

- Fast
 - $\tau_{singlet}$ = 4.2 ns
 - •triplet= 22 ns
 - •trecomb= 45 ns
- Particle ID
 - LY alpha = $1.2 \times LY$ gamma/e
- High LY (\approx NaI)
 - 40000 phe/MeV
- n = 1.65
- Z=54, ρ =2.95 g/cm³ (X₀=2.7 cm), R_M=4.1 cm
- No self-absorption $(\lambda_{Abs} = \infty)$

The LXe calorimeter

prototype

- A 100 liters, 240 PMTs large prototype was built and exensively tested to demonstrate the calorimeter performance
- α -sources and LEDs used for PMT calibrations and monitoring

Xenon purity

- Energy resolution strongly depends on absorption
- We developed a method to measure the absorption length with alpha sources
- We added a purification system (molecular sieve + gas getter) to reduce impurities below ppb

Energy resolution measurement

- $\pi^- p \to \pi^0 n \\ \pi^0 \to \gamma \gamma$
- The monochromatic spectrum in the pi-zero rest frame becomes flat in the Lab
- In the back-to-back configuration the energies are 55 MeV and 83 MeV
- Even a modest collimation guarantees a sufficient monochromaticity
- Liquid hydrogen target to maximize photon flux
- An "opposite side detector" is needed (NaI array)

OSL54

QSL53

- In the back-to-back raw spectrum we see the correlation
 - $83 \text{ MeV} \Leftrightarrow 55 \text{ MeV}$
 - The 129 MeV line is visible in the NaI because Xe is sensitive to neutrons (9 MeV)

Resolutions @ 55 MeV (* "

- Select negative pions in the beam
- 65 MeV < E(NaI) < 95 MeV
- Collimator cut (r < 4 cm)

Status of the calorimeter

- All > 900 PMTs tested at Pisa and PSI
- PMT support structure: ready
- Warm vessel: ready
- Cold vessel: under completion

MEG (LXe) calibrations

- A reliable result depend on a constant calibration and monitoring of the apparatus
 - Charge exchange reaction (Panofsky)
 - alpha Sources (on wires and wall)
 - Proton accelerator $^{7}\text{Li}(p, \gamma_{17.6})^{8}\text{Be}$
 - Neutron capture ${}^{58}\mathrm{Ni}(n,\gamma_9){}^{59}\mathrm{Ni}$
- Calibration frequency is different

$$\begin{array}{c} \pi^- p \to \pi^0 n \\ \pi^0 \to \gamma \gamma \end{array}$$

Alpha sources

- 4 W wires suspended inside the liquid xenon
 - unique to liquid
 - Po and Am sources
- QEs determined by comparison of alpha source signal in cold gaseous xenon and MC determined at a 10% level $_{14}$

Proton accelerator

- Positioned opposite to the muon beam
- Essentially two reactions

Reaction	Resonance energy	σ peak	γ-lines
Li(p,y)Be	440 keV	5 mb	17.6 MeV, 14.6 MeV
$B(p,\gamma)C$	163 keV	2 10 ⁻¹ mb	4.4 MeV, 11.7 MeV, 16.1 MeV

• tested at Legnaro (Italy) van de Graaf with a large NaI

Neutron/Ni y-line

- Reaction of thermal neutrons on Ni
- AmBe source inside a polyethylene/nickel sandwich (Cf)
- Tested with large NaI
- Will be placed behind the calorimeter

MEG sensitivity

• Computation of the sensitivity based on the measured resolutions

FWHM E_{γ}/E_{γ}	5~%
FWHM E_e/E_e	0.9~%
$\delta t_{e\gamma}$	$105 \mathrm{\ ps}$
$\delta heta_{e\gamma}$	23 mrad

- The resolutions determine the accidental background
- For a given background we choose $R(\mu)$ and running time.
 - BG = 0.5 events
 - $R(\mu) = 1.2 \text{ 10}^7 \mu/\text{sec}$
 - $T = 3.5 \text{ IO}^7 \text{ sec} (2 \text{ years running time})$
 - \Rightarrow SES = 6 10⁻¹⁴ (1.7 10¹³ muons observed)
- NO candidate \Rightarrow BR($\mu \rightarrow e\gamma$) < 1.2 10⁻¹³ @ 90% CL
- Unlikely fluctuation (4 events) $\Rightarrow BR(\mu \rightarrow e\gamma) \approx 2.4 \text{ IO}^{-13}$

Summary and Time Scale

- The experiment may provide a clean indication of New Physics or a strong constrain on SM extensions, complementary to proton decay searches
- Measurements and detector simulation make us confident that we can reach the SES of 6 x 10⁻¹⁴ to $\mu \rightarrow e\gamma$ (BR = 1.2 10⁻¹³)
- Final prototypes of all sub-detectors were measured
 - Liquid Xe calorimeter Large Prototype
 - Chambers
 - Timing counters
 - Trigger/DAQ

• Detector assembly during end 2006 engineering run end 2006 - beg. 2007

Plans

- Data taking from 2007 on to reach 10⁻¹³ sensitivity (90% CL)
- Obtain a "significant" result before the LHC era
- Eventual reach 10⁻¹⁴ during LHC era

Back-up slides

- LP Energy resolution as a function of the position
- <u>LP position resolution</u>
- <u>Xe scintillation mechanism</u>
- <u>Xe absorption</u>
- <u>Xe lambda Abs measurement</u>
- Liquid phase purification
- <u>DAQ, DRS</u>
- <u>Trigger</u>

- It is possible to estimate a lower limit on the xenon absorption length
- Typical plots shown
 - $\lambda_{Abs} > 125 \text{ cm} (68\% \text{ CL}) \text{ or } \lambda_{Abs} > 95 \text{ cm} (95\% \text{ CL})$
 - LY 37500 scintillation photons/MeV (0.9 NaI)

LXe calorimeter R&D

- Energy resolution strongly depends on absorption. A long R&D to insure L(Abs)>3 m with a circulation/purification system
- Measurement of energy and timing resolution with high energy photons: 55 MeV photons from pion charge exchange reaction

Liquid phase purification

- Xenon circulation in liquid phase.
- Impurity (water) is removed by a purifier cartridge filled with molecular sieves.
- 100 l/hour circulation.

Position dependence

- small FWHM residual dependence
- no significant peak shift
- The resolution is always better than 5% FWHM

		3 6	0 F	1 7
50	average 57.26 + 0.17 ide	v 1 54	С Ауагода 57.48 ± 0.13 О FWHM 2.67 ± 0.24	3 MeV =
40	FWHM 2.75 ± 0.25 MeV	44	$0 = (4.84 \pm 0.42\%)$	
30	$\sigma_{\rm ff} = 1.62 \pm 0.15 \%$	3	0 X ³ /dof=1.6	
20		2	0	
10	المربوبية والمرابط	- 1		
0	20 40 60	80 ·	0 0 20 40	60 SO
	E, (MeV)	E	, (MeV)
70		<u>- '781.0-</u>		N '805.0-
70 60		<u>''781.0</u> - 69		ANI''805.0-
70 60 50	Average 57.14 ± 0.14 Me	<u>-'781.0</u> - 64 - 54	0 - Average 57.19 ± 0.13	41 '805.0- - 3 MeV -
70 60 50	Average 57.14 ± 0.14 Me FWHM 2.59 ± 0.28 MeV (4.53 ± 0.5 %)	<u>-'781.0</u> - 61 ₩ - 51	0 - Average 57.19 ± 0.1 0 - Average 57.19 ± 0.1 FWHM 2.89 ± 0.34 0 - (5.03 ± 0.6 %)	41 '805.0- 3 MeV - 4eV -
70 60 50 40	Average 57.14 \pm 0.14 Me FWHM 2.59 \pm 0.28 VeV (4.53 \pm 0.5 \times) $\sigma_{\rm s}$ =1.55 \pm 0.17 \times	<u>-'781.0</u> - 64 - 54 - 54 - 44	0 Average 57.19 ± 0.13 FWHM 2.89 ± 0.34 0 (5.03 ± 0.6 %) σ_=1.66 ± 0.2 %	Ati '805.0- 3 MeV 4eV
70 60 50 40 30	Average 57.14 \pm 0.14 Me FWHM 2.59 \pm 0.28 MeV (4.53 \pm 0.5 \times) $\sigma_{\rm e}$ =1.55 \pm 0.17 \times χ^2 /dof=1.3	- <u></u>	$0 = \frac{1}{4410H}$ $0 = \frac{1}{4410H}$ $0 = \frac{1}{4400} + $	A 1 '805.0- - 3 MeV -
70 60 50 40 30 20	Average 57.14 \pm 0.14 Me FWHM 2.59 \pm 0.28 VeV (4.53 \pm 0.5 \times) $\sigma_{\rm s}$ =1.55 \pm 0.17 \times χ^{*} /dof=1.3	<u>- '781.0</u> - 69 ₩ 59 - 44 - 39	$0 = \frac{A1.0H}{A4.0H}$ $0 = Average 57.18 \pm 0.13$ $FWHM = 2.88 \pm 0.34$ $0 = (5.03 \pm 0.6\%)$ $\sigma = 1.66 \pm 0.2\%$ $0 = \chi^2/dof = 1$ $0 = \frac{1.66}{A}$	A 1 '805.0- 3 MeV
70 60 50 40 30 20 10	Average 57.14 \pm 0.14 Me FWHM 2.59 \pm 0.28 eV (4.53 \pm 0.5 \times) $\sigma_{\rm H}$ =1.55 \pm 0.17 \times χ^2 /dof=1.3		0 Average 57.18 \pm 0.13 FWHM 2.88 \pm 0.34 0 (5.03 \pm 0.6 %) $\sigma_{a}=1.66 \pm 0.2 \%$ 0 $\chi^{a}/dof=1$ 0	A 1 '805.0- - 3 MeV -
70 60 50 40 30 20 10 0	Average 57.14 \pm 0.14 Me FWHM 2.59 \pm 0.28 VeV (4.53 \pm 0.5 \times) $\sigma_{\rm H}$ =1.55 \pm 0.17 \times χ^2 /dof=1.3 20 40 60	- '781.2 - 59 - 59 - 44 - 39 - 39 - 19 -	$\begin{array}{c} 0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	MeV 50 80

809.0

ALLEXAN BEND

4.8%	4.6%
4.5%	5.0%

Trigger Electronics

• 100 MHz waveform digitizer on VME boards that perform online pedestal subtraction

• Uses :

- •Y energy
- • e^+ γ time coincidence
- • $e^+ \gamma$ collinearity
- Built on a FADC-FPGA architecture
- More performing algorithms could be implemented

- Prototype system has been successfully tested on the LP
- Design of the final system is in progress
- π° data
- Charge spectrum
- Only 32 PMT

• Beam rate $10^8 \, \text{s}^{-1}$

Fast LXe energy sum > 45MeV 2×10³ s⁻¹

gamma interaction point (PMT of max charge)

e⁺ hit point in timing counter

time correlation γ - e⁺ 200 s⁻¹

angular correlation γ - e⁺ 20 s⁻¹

Readout electronics

2.5 GHz Waveform digitization for all channels

DRS2 chip (Domino Ring Sampler)

- Custom sampling chip designed at PSI
- 2.5 GHz sampling speed @ 40 ps timing resolution
- Sampling depth 1024 bins for 8 channels/chip
- Data taken in charge exchange test to study pile-up rejection algorithms

Scintillation process in Xe

Position resolution

