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Introduction

Cross sections of processes with a hard scale Q2 symbolically may be
written as

F
⊗

σ̂
⊗

F

F i
A(x,Q2) —parton distributions

σij(xi, xj , Q
2) – partonic cross sections.

Evolution of the parton distributions with τ = ln
(

Q2/Λ2
QCD

)

is

determined by the DGLAP equations
V.N. Gribov, L.N. Lipatov, 1972,

L.N. Lipatov, 1975,
Yu.L. Dokshitzer, 1977,
G. Altarelli, Parisi, 1977

∂F
∂τ

=
ᾱS(Q2)

2
P
⊗

F
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Introduction

which are basically renorm group equations. Moments of the kernels
or splitting functions P i

j (z) give the anomalous dimension matrix
γ(N):

γij(N) =

∫ 1

0
dz zN−1P i

j (z) .

The standard DGLAP approach fails at small x = Q2/s (s is c.m.s.
energy squared), in particular because of the necessity to sum the
terms of the perturbation series enhanced by powers of log(1/x).
Resummation of leading log(1/x)-terms (αS ln(1/x))n was performed
in the BFKL approach

V.S.F., E.A. Kuraev, L.N.Lipatov, 1975,
E.A. Kuraev, L.N. Lipatov, V.S.F., 1976,

Ya.Ya. Balitskii, L.N. Lipatov, 1978,
based on the gluon Reggeization.
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Introduction

It describes evolution of the unintegrated gluon distribution F(x,~k2)

not in lnQ2, but in ln(1/x):

∂F
∂ ln(1/x)

= K
⊗

F ,

K is the BFKL kernel and
⊗

means convolution not over fractions of
longitudinal momenta as in the DGLAP equation, but over transverse
momenta. The BFKL equation resums the terms
(αS ln(1/x))n at leading order (LOx),
αS(αS ln(1/x))n ) at next-to-leading order (NLOx).
In the leading logarithmic approximation (LLA) it predicts σ ∼

(

1
x

)ωP ,
where the Pomeron intercept (with subtracted 1)

ωP = 4Nc
αs

π
ln 2, ωP ' 0.4 for αs = 0.15

.
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Introduction

The BFKL equation became famous just due to this prediction, since
the rapid growth of the γ∗p cross sections was discovered at HERA.
Therefore BFKL is usually associated with the evolution equation for
the unintegrated gluon distribution.
Actually the region of applicability of the BFKL approach is much
wider.
The evolution equation for the unintegrated gluon distribution appears
in this approach as a particular result for the imaginary part of the
forward scattering amplitude (t = 0 and vacuum quantum numbers in
the t-channel).
But the approach gives the description of scattering amplitudes at any
fixed momentum transfer

√
−t and at any colour state

in the t-channel in the limit of large center-of-mass energy
√
s (Regge

limit).
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Introduction

It is worthwhile to add that
the approach was developed, and is more suitable, for the description
of processes with only one hard scale,
such as γ∗γ∗ scattering with both photon virtualities of the same order,
where the DGLAP evolution is absent.
In the leading logarithmic approximation (LLA) neither scale of energy
nor scale of transverse momenta entering in strong coupling αs(k⊥)
are fixed. They can be determined at next-to-leading approximation
NLA, when the terms

αS(αS ln(1/x))n

are resummed. The Pomeron intercept and normalization of cross
sections can be fixed only in the NLA.

New Trends in HEP, Yalta, Crimea, Ukraine, September 16–23, 2006 – p. 7/47



Introduction

Evidently the power growth violate the Froissart bound

σtot < const(ln s)2.

This problem can not be solved by calculation of radiative corrections
at any fixed NNN...NL order and requires other methods. The most
popular now are non-linear generalizations of the BFKL equation,
related to the idea of saturation of parton densities

L.V. Gribov, E.M. Levin, M.G. Ryskin, 1983.
A general approach to the unitarization problem is reformulating of
QCD in terms of a gauge-invariant effective field theory for the
Reggeized gluon interactions

L.N. Lipatov 1995.
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The gluon Reggeization

A remarkable property of QCD is the gluon Reggeization. In the
multi-Regge kinematics (MRK) QCD amplitudes with the gluon
exchange have the form:

<A2→n+2 = Γ̄R1

J0A

(

n
∏

i=1

eω(qi)(yi−1−yi)

q2i⊥
γJi

RiRi+1

)

eω(qn+1)(yn−yn+1)

q2(n+1)⊥

Γ
Rn+1

Jn+1B.

B

Jn+1J0

A

q2, c2 qn, cn qn+1 cn+1q1, c1

kn
kn+1k0

pA pB

J1 Jn

k1
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The gluon Reggeization

The hypothesis is extremely powerful:

It allows us to express scattering amplitudes only through several
effective vertices and gluon trajectory.

It creates the basis of the BFKL approach to the theoretical
description of high energy scattering.

The Pomeron and Odderon in QCD appear as the compound
state of the Reggeized gluons.

The effective action based on Reggeized gluons is the most
general way of the solution of saturation and unitarization
problems.

It gives a link between QCD and the String Theory.
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The gluon Reggeization

Assuming this form the vertices ΓP ′P and the Regge trajectories ω can
be easily calculated in the leading order (LO).

To find them it is sufficient to calculate the simplest elastic scattering
amplitude with the P → P ′ transition in the Born approximation. Of
course, other processes can be used to test that the Regge form is
valid.
To find a trajectory it is sufficient to calculate with logarithmic accuracy
one-loop correction to elastic scattering amplitude with corresponding
quantum numbers in the t–channel.
Of course, neither the calculation, nor the results are not so simple in
the next-to-leading order (NLO).
All vertices for interaction of the Reggeon with quarks and gluons are
known in the NLO
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The gluon Reggeization

V.S.F., L.N. Lipatov, 1993;
V.S.F., R. Fiore, 1992;

V.S.F., R. Fiore, A. Quartarolo; 1994;
V.S.F, R. Fiore, M.I. Kotsky, 1995.

The two-loop contribution to the Regge trajectory was obtained at
arbitrary space-time dimension D = 4 + 2ε in terms of integrals over
transverse momenta

V.S.F., R. Fiore, M.I. Kotsky, 1995;
V.S.F., R. Fiore, A. Quartarolo, 1996;

V.S.F., R. Fiore, M.I. Kotsky, 1996.
The integrals can be expressed in terms of elementary functions only
for ε→ 0.
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The gluon Reggeization

Explicit expression for the two-loop contribution

V.S.F., M.I. Kotsky, 1996;
J. Bluemlein, V. Ravindran, W.L. van Neerven, 1998;

V.Del Duca, E.W.N. Glover, 2001
in pure gluodynamics

ω(2)(t) '
(

ḡ2
(

~q 2
)ε

ε

)2
[

11

3
+

(

2ψ′(1) − 67

9

)

ε

+

(

404

27
+ ψ′′(1) − 22

3
ψ′(1)

)

ε2
]

, ḡ2 =
g2NΓ(1 − ε)

(4π)D/2
.

where ψ(x) = Γ′(x)/Γ(x), Γ is the Euler gamma-function. The
space-time dimension D = 4 + 2ε =/4.
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The gluon Reggeization

ΓR
Q′Q and ΓR

G′G describe transitions Q → Q′ and G → G′ in
collision with Reggeon R.

In light cone gauge the vertex of gluon transition can be written as:
Γ

c(B)
G′G = −g

(

e∗(p′)e(p)
)

⊥
T c

G′G

Γa
G′G = Γ

a(B)
G′G

{

1 +
ω(1)(t)

2

[2

ε
+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)−

− 9(1 + ε)2 + 2

2(1 + ε)(1 + 2ε)(3 + 2ε)
+
nf

Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]}

+

+ gT a
G′Ge

′
∗

⊥µe⊥ν

(

gµν
⊥

− (D − 2)
qµ
⊥
qν
⊥

q2
⊥

) εω(1)(t)

2(1 + ε)2(1 + 2ε)(3 + 2ε)

(

1 + ε− nf

Nc

)

,

V.S. F., L.N. Lipatov, 1993
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Calculation of scattering amplitudes

Amplitudes of processes with all possible quantum numbers in the
t–channel are calculated using unitarity and analiticity .

pA

pB

pA′

pB′

q1

qi

qi+1

qn+1

q′1

q′i

q′i+1

q′n+1

Σn
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Scattering amplitudes

The amplitudes are presented in the form :

ΦA′A ⊗ G ⊗ ΦB′B.

pA pA′

ΦA′A

q1 q1 − q

q2 q2 − q

G

pB pB′

ΦB′B
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Scattering amplitudes

Impact factors ΦA′A and ΦB′B describe transitions A→ A′ B → B′ ,
G – Green’s function for two interacting Reggeized gluons,

Ĝ = eY K̂,

K̂ – BFKL kernel, Y = ln(s/s0) ,

K̂ = ω̂1 + ω̂2 + K̂r

,
K̂r = K̂G + K̂QQ̄ + K̂GG

.
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Scattering amplitudes

Energy dependence of scattering amplitudes is determined by the
BFKL kernel.
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The gluon Reggeization

The Reggeon vertices and trajectory were obtained assuming the
Reggeized form of elastic amplitudes.
This form was proved at Born level using t–channel unitarity and
analyticity. Their Regeization (appearance of the Regge factors sω(t)

as a result of calculation of radiative corection) arose as a hypothesis
in the LLA (only gluons can be produced and each jet is actually a
gluon in this approximation) on the basis of direct calculations at
three-loop level for elastic amplitudes and one-loop level for one-gluon
production amplitudes. Later it was proved in the LLA for all
amplitudes at arbitrary number of loops with the help of bootstrap
relations

Ya.Ya. Balitskii, L.N. Lipatov, V.S.F., 1978

New Trends in HEP, Yalta, Crimea, Ukraine, September 16–23, 2006 – p. 19/47



The gluon Reggeization

The hypothesis is extremely powerful since an infinite number of
amplitudes is expressed in terms of the gluon Regge trajectory and
several Reggeon vertices.
Evidently, its proof is extremely desirable. The proof is especially
necessary because of appearance of statements about existence of
contributions violating the Regge ansatz at three loop level.

T. Kucs, 2004

Now the desired proof is completed

V.S.F., R. Fiore, M.G. Kozlov, A. V. Reznichenko, 2006
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The gluon Reggeization

The proof of the gluon Reggeization in the NLA is also based on the
bootstrap relations:

1

−πi





n+1
∑

l=j+1

discsj,l
−

j−1
∑

l=0

discsl,j



AS

2→n+2/(p
+
Ap

−

B) =
∂

∂yj

AS

2→n+2(yi)/(p
+
Ap

−

B)

that allow us to express partial derivatives ∂/∂yj of the amplitudes, through the certain
combination of discontinuities of the signaturized amplitudes:
S means symmetrization with respect to simultaneous change of signs of all si,j with
i < k ≤ j, performed independently for each number of channel k = 1, . . . , n+ 1.
One of the methods for the b.r. derivation is based on the Steinmann theorem in
conjunction with general analytical properties of the MRK amplitudes
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The gluon Reggeization

If we prove the b.r. in perturbative calculation, it will means the proof
of the Regge form in NLA, since one can recursively calculate Regge
amplitudes loop-by-loop in all orders of coupling constant using MRK
amplitudes only in the one loop approximation for every n as an input.
Indeed, b.r. express all partial derivatives of the real parts at some
number of loops through the discontinuities, calculated using the
s-channel unitarity in terms of amplitudes with a smaller number of
loops. In the NLA only real parts of the amplitudes do contribute in the
unitarity relations.
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Scattering amplitudes

Talking about the BFKL kernel one usually has in mind the case of the
forward scattering, i.e. t = 0 and vacuum quantum numbers in the
t-channel. However, the BFKL approach is not limited to this particular
case and, what is more, from the beginning it was developed for
arbitrary t and for all possible t-channel colour states.
The forward BFKL kernel at NLO was found more than seven years
ago.

V.S.F., L.N. Lipatov, 1998,
M. Ciafaloni, G. Camici, 1998.

The forward kernel can carry only restrictive information about the
BFKL dynamics. Moreover, the non-forward case has an advantage of
smaller sensitivity to large-distance contributions, since the diffusion in
the infrared region is limited by

√

|t|. But the calculation of the
non-forward kernel at NLO was completed only last year.
The reason was a complexity of the two-gluon contribution.
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Scattering amplitudes

The “real" contribution

K̂r = K̂G + K̂QQ̄ + K̂GG

is related to particle production in Reggeon-Reggeon collisions and
consists of parts coming from one-gluon, two-gluon and
quark-antiquark pair production. The first part is also universal, apart
from a colour coefficient, and is also known in the NLO

V.S.F., D.A. Gorbachev, 2000.
The new contributions which appear in the NLO are K̂QQ̄ and K̂GG .
Each of them is written as a sum of two terms with coefficients
depending on a colour representation R in the t-channel. For the QQ̄
case both these terms are known. Instead, only the piece related to
the gluon channel was known for the GG case.

V.S.F., D.A. Gorbachev, 2000.
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Scattering amplitudes

Thus, the two-gluon contribution was the only missing piece in the the
non-forward BFKL kernel.
The “non-subtracted" contribution to the kernel KGG is

∑

G1G2

∫

γG1G2

(

γ′G1G2

)∗

dφG1G2
,

γG1G2 and γ′G1G2 – effective vertices for two-gluon production in
collision of Reggeized gluons with momenta q1, −q2 and q′1, −q′2
respectively;

q1 − q′1 = q2 − q′2 = q,

q is the total momentum transfer,

q1 − q2 = q′1 − q′2 = k1 + k2,
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Scattering amplitudes

ki – momenta of produced gluons,
dφG1G2

– their phase space element; the sum is over polarizations and
colours of produced gluons. For two-gluon states (and only for them)
the integral over their invariant mass k2 is logarithmically divergent at
large k2, that requires subtraction of the region of large invariant
mass. This region is taken into account in the leading terms.
The two-gluon vertex

L.N. Lipatov, V.S.F., 1989.
contains two colour structures:

γG1G2 = TG1TG2γ12 + TG2TG1γ21 ,

Accordingly, for any representation of R of the colour group the

two-gluon contribution K(R)
GG contains two terms:
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Scattering amplitudes

"direct"
TG1TG2TG2TG1

and "interference"

TG1TG2TG1TG2 ,

with different colour coefficients aR and bR and the functions Fa and Fb,

Fa ∝ γ1γ
′
1 + γ2γ

′
2, Fb ∝ γ1γ

′
2 + γ2γ

′
1,

With account of the subtraction K(R)
GG is presented in the form

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0
dx

∫

d2+2εk1

(2π)D−1

(

aRFa(k1, k2) + bRFb(k1, k2)

x(1 − x)

)

+

,
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Scattering amplitudes

where the operator Ŝ symmetrizes with respect to exchange of the
Reggeon momenta, x is a fraction of longitudinal momenta of a
produced gluon,

(

f(x)

x(1 − x)

)

+

≡ 1

x
[f(x) − f(0)] +

1

(1 − x)
[f(x) − f(1)],

The group coefficients are expressed through the coefficients cR

appearing in the leading order: aR = c2R and bR = cR
(

cR − 1
2

)

.
For the colour group SU(Nc) with Nc = 3 the possible representations
R are

1, 8a, 8s, 10, 10, 27.
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Scattering amplitudes

Corresponding coefficients are

c1 = 1 , c8a
= c8s

=
1

2
, c10 = c10 = 0 , c27 = − 1

4Nc

In particular,

a0 = 1 , a8a
= a8s

=
1

4
, b1 = 1/2, b8a

= b8s
= 0.

The last equality is especially important for the antisymmetric case,
since the vanishing of b8a

is crucial for the gluon Reggeization.
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Scattering amplitudes

The equality b8 = 0 extremely simplifies calculation of the octet kernel

V.S.F., D.A. Gorbachev, 2000.
Remarkably, that only planar diagrams contribute to K(8)

GG due to the
colour structure.
Instead of calculation of the second term in

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0
dx

∫

d2+2εk1

(2π)D−1

(

aRFa(k1, k2) + bRFb(k1, k2)

x(1 − x)

)

+

we have found more convenient to calculate the “symmetric"
contribution

K(s)
GG(~q1, ~q2; ~q) =

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0
dx

∫

d2+2εk1

(2π)D−1

(

Fs(k1, k2)

x(1 − x)

)

+
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Scattering amplitudes

where

Fs = Fa + Fb ∝ (γ1 + γ2)(γ
′
1 + γ′2).

A marvellous feature of K(s)
GG is absence of infrared singularities.

The disappearance of the singularities is rather tricky: it takes place
due to independence of infrared singular terms in the Fs from x.
Because of this reason the singularities vanish after the substraction.
Relations between the colour coefficients aR and bR permits to write
the two-gluon contribution to the kernel for any representation R is the
form

K(R)
GG = 2cRK(8)

GG + bRK(s)
GG.

Moreover, in pure gluodynamics an analogous relations is valid for
total "real" parts of the kernel:
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Scattering amplitudes

K(R)
r = 2cRK(8)

r + bRK(s)
GG.

Since K(s)
GG is infrared safe, this relation greatly simplifies analysis of

infrared singularities, especially because
The "real" part K(8)

r for the gluon channel is rather simple
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Scattering amplitudes

K
(8)
r (~q1, ~q2; ~q) =

g2Nc

2(2π)D−1

� �

~q 2
1 ~q ′ 2

2 + ~q ′ 2
1 ~q 2

2

~k 2
− ~q 2

�

×

�

1

2
+

g2NcΓ(1− ε)(~k 2)ε

(4π)2+ε

�

−
11

6ε
+

67

18
− ζ(2) + ε

�

−
202

27
+ 7ζ(3) +

11

6
ζ(2)

� �

�

+
g2NcΓ(1− ε)

(4π)2+ε

�

~q 2

�

11

6
ln

�

~q 2
1 ~q 2

2

~q 2~k 2

�

+
1

4
ln

�

~q 2
1

~q 2

�

ln

�

~q ′2
1

~q 2

�

+
1

4
ln

�

~q 2
2

~q 2

�

ln

�

~q ′2
2

~q 2

�

+
1

4
ln2

�

~q 2
1

~q 2
2

� �

−
~q 2
1 ~q ′ 2

2 + ~q 2
2 ~q ′ 2

1

2~k 2
ln2

�

~q 2
1

~q 2
2

�

+
~q 2
1 ~q ′ 2

2 − ~q 2
2 ~q ′ 2

1

~k 2
ln

�

~q 2
1

~q 2
2

� �

11

6
−

1

4
ln

�

~q 2
1 ~q 2

2

~k 4

� �

+
1

2
[~q 2(~k 2

− ~q 2
1 − ~q 2

2 ) + 2~q 2
1 ~q 2

2 − ~q 2
1 ~q ′ 2

2 − ~q 2
2 ~q ′ 2

1 +
~q 2
1 ~q ′ 2

2 − ~q 2
2 ~q ′ 2

1

~k 2
(~q 2

1 − ~q 2
2 )]

×I(~q 2
1 , ~q 2

2 , ~k 2)

� �

+
g2Nc

2(2π)D−1

�

~qi ←→ ~q ′

i

	

,

where

I(a, b, c) =
1

0

dx

a(1− x) + bx− cx(1− x)
ln

�

a(1− x) + bx

cx(1− x)

�

.
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Scattering amplitudes

The "symmetric" contribution is rather complicated. The complexity is
related to the non-planar diagrams. t is known since the calculation of
the non-forward kernel for the QED Pomeron

V.N. Gribov, L.N. Lipatov, G.V. Frolov, 1970
H. Cheng, T.T. Wu, 1970 where only box and cross-box diagrams are

relevant. The kernel was found only in the form of two-dimensional
integral.
In QCD the situation is greatly worse because of the existence of
cross-pentagon and cross-hexagon diagrams in addition to QED-type
cross-box diagrams.
It requires the use of additional Feynman parameters.
At arbitrary D no integration over these parameters at all can be done
in elementary functions. It occurs, however, that
in the limit ε→ 0 the integration over additional Feynman parameters
can be performed, so that the result can be written as
two-dimensional integral, as well as in QED.
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BFKL and colour dipole picture

A very popular approach to high energy scattering is now the color
dipole one

N.N. Nikolaev, B.G. Zakharov, 1991,
A.H. Mueller, 1994.

The great advantage of this approach is a clear physical interpretation
in the target rest frame. Moreover, this approach is naturally applied
not only at low parton density, but in the saturation regime

L.V. Gribov, E.M. Levin, M.G. Ryskin, 1983,
where equations of evolution of parton densities with energy become
nonlinear. In general, there is an infinite hierarchy of coupled
equations

Ia. Balitsky, 1996,
Yu. Kovchegov, 1999,

L. McLerran, R. Venugopalan, 1994,
J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, 1997,

E. Iancu, A. Leonidov, L. McLerran, 2001.
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BFKL and colour dipole

In the simplest case, when the target is a large nucleus, it is reduced
to the BK (Balitsky-Kovchegov) equation with the kernel

〈~r1~r2|K̂BK |~r ′
1~r

′
2〉 =

g2Nc

8π3

∫

d2ρ
(~r1 − ~r2)

2

(~r1 − ~ρ)2(~r2 − ~ρ)2
(

δ(~r1 − ~r ′
1)δ(~r ′

2

−~ρ) + δ(~r2 − ~r ′
2)δ(~r ′

1 − ~ρ) − δ(~r1 − ~r ′
1)δ(~r2 − ~r ′

2)
)

It is claimed that in the linear regime the colour dipole approach gives
the same results as the leading order BFKL.
But contrary to the BFKL approach, a consistent way of calculation of
radiative corrections in the context of the dipole approach is not
known.
Unfortunately, "native" representations for two these approaches are
different.
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BFKL and colour dipole

Therefore relation of these two approaches is not quite obvious. A
clear understanding of this relation should help in further development
of the theoretical description of small-x processes. In the leading order
this relation was discussed many times. Recently it was analyzed in

J. Bartels, L. N. Lipatov, M. Salvadore, G. P. Vacca, 2005.
We

V.S.F., R. Fiore, A. Papa, 2006
have tried to extend this analysis on the NLO. The NLO generalization
of the colour dipole picture should emerge as the result of this
investigation. We plan to obtain both quark and gluon parts of the
kernel in the dipole approach by direct transformation of the BFKL
kernel in the momentum representation to the coordinate
representation. Evidently, we started with the simplest part of the NLO
BFKL kernel — the "non-abelian" part of the quark contribution to the
kernel.
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BFKL and colour dipole

Let us begin with the leading order. Since the NLO calculations are
performed using the dimensional regularization, for consistency let us
use the space-time dimension D = 4 + 2ε in the LO as well. Then the
BK kernel is

〈~r1~r2|K̂BK |~r ′
1~r

′
2〉 =

g2NcΓ
2(1 + ε)

8π3+2ε

∫

d2+2ερ

(

(~r1 − ~ρ)

(~r1 − ~ρ)2(1+ε)

− (~r2 − ~ρ)

(~r2 − ~ρ)2(1+ε)

)2
(

δ(~r1 − ~r ′
1)δ(~r ′

2

−~ρ) + δ(~r2 − ~r ′
2)δ(~r ′

1 − ~ρ) − δ(~r1 − ~r ′
1)δ(~r2 − ~r ′

2)
)

For an irreducible representation R of the colour group the kernel is
written as
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BFKL and colour dipole

K̂(R) = ω̂1 + ω̂2 + K̂(R)
r ,

In the leading order

〈~r|ω̂|~r ′〉 =
g2NcΓ

2(1 + ε)

8π3+2ε(~r − ~r ′)2(1+2ε)
.

Therefore
〈~r1~r2|ω̂1 + ω̂2|~r ′

1~r
′
2〉

=
g2NcΓ

2(1 + ε)

8π3+2ε

[

δ(~r1 − ~r ′
1)

(~r2 − ~r ′
2)2(1+2ε)

+
δ(~r2 − ~r ′

2)

(~r1 − ~r ′
1)2(1+2ε)

]

.

The "real" part at the leading order
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BFKL and colour dipole

〈~r1~r2|K̂(R)
r |~r ′

1~r
′
2〉 =

g2NccRΓ2(1 + ε)

4π3+2ε

∫

dD−2ρ
(~r1 − ~ρ)

(~r1 − ~ρ)2(1+ε)

(~r2 − ~ρ)

(~r2 − ~ρ)2(1+ε)

×
(

δ(~r1 − ~r ′
1) − δ(~r ′

1 − ~ρ)
) (

δ(~r2 − ~r ′
2) − δ(~r ′

2 − ~ρ)
)

.

Therefore, for the colour singlet (Pomeron) in the t–channel we have

〈~r1~r2|K̂(1)|~r ′
1~r

′
2〉 = 〈~r1~r2|K̂BK |~r ′

1~r
′
2〉

−g
2NcΓ

2(1 + ε)

8π3+2ε

[

δ(~r1 − ~r ′
1)

(~r1 − ~r ′
2)2(1+2ε)

+
δ(~r2 − ~r ′

2)

(~r2 − ~r ′
1)2(1+2ε)

−2
δ(~r ′

1 − ~r ′
2)(~r1 − ~r ′

1)(~r2 − ~r ′
2)

(~r1 − ~r ′
1)2(1+ε)(~r2 − ~r ′

2)2(1+ε)

]

.
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BFKL and colour dipole

The last term in the square brackets can be omitted supposing that
the kernel acts on amplitudes possessing the "dipole property", i.e.
vanishing at ~r ′

1 = ~r ′
2 ; the first two terms can be omitted supposing that

results of the action are convoluted with "gauge invariant", i.e.
vanishing at zero momenta ~q1 or ~q2 impact factors

L. N. Lipatov, 1989,
J. Bartels, L. N. Lipatov, M. Salvadore, G. P. Vacca, 2005.

The "dipole property" permits to add to 〈~r1~r2|K̂(1)|~r ′
1~r

′
2〉 terms

proportional to δ(~r ′
1 − ~r ′

2) (in the momentum space not depending on
~q ′
1 and ~q ′

2 separately). The "gauge invariance" permits to add to
〈~r1~r2|K̂(1)|~r ′

1~r
′
2〉 terms not not depending on ~r1 and ~r2 (in the

momentum space proportional to the kernel the terms proportional to
δ(~q1) or δ(~q2)).
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BFKL and colour dipole

So, the BFKL and BK kernels are not related by the Fourier transform,
i.e. they have only a "limited equivalence". Corresponding Green’s
functions are different, and only amplitudes are the same supposing
the "dipole property" and "gauge invariance".
The freedom of redefinition of the kernel due to the "dipole property"
of "input" amplitudes and "gauge invariance" of impact factors permits
to come to the BK kernel which itself has the "dipole property", that
means turns into zero at (~r1 = ~r2). Note, however, that it means

〈R̂ω|K̂BK = 0,

i.e. the "bootstrap relation", which can be written as

〈R̂ω|(K̂(1) + ω̂1 + ω̂2 − 2ω(t)) = 0

is not valid for K̂BK . It can be easily checked explicitly from
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BFKL and colour dipole

〈~q1~q2|K̂BK |~q ′
1~q

′
2 〉 = 〈~q1~q2|K̂(1)|~q ′

1~q
′
2〉

+δ(~q − ~q ′)

[

δ(~q2)ω(~q ′
2) + δ(~q1)ω(~q ′

1) +
g2Nc

(2π)3+2ε

2~q1~q2
~q 2
1 ~q

2
2

]

.

Let us turn to the NLO. Here we consider only the quark contribution.
Moreover, we use the large Nc limit, were the real contribution is
strongly simplified. At arbitrary ε it has the form

〈~q1~q2|
ˆK(R)Q

r |~q ′

1~q
′

2 〉 = δ(~q − ~q ′)
2g4NcnfcR

(4π)2+ε

Γ(1 − ε)

ε(2π)D−1

Γ2(2 + ε)

Γ(4 + 2ε)~q 2
1 ~q

2
2

×
{

2~k2(ε−1)(~q 2
1 ~q

′ 2
2 + ~q 2

2 ~q
′ 2
1 ) + ~q 2

(

2~q 2ε − ~q 2ε
1 − ~q ′ 2ε

1 − ~q 2ε
2 − ~q ′ 2ε

2

)

− (~q 2
1 ~q

′ 2
2 − ~q 2

2 ~q
′ 2
1 )

~k2

(

~q 2ε
1 − ~q ′ 2ε

1 − ~q 2ε
2 + ~q ′ 2ε

2

)

}

.
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BFKL and colour dipole

The quark contribution ωQ to the trajectory for the case of nf massless
quark flavours can be written as

〈~q|ω̂Q|~q ′〉 = δ(~q − ~q ′)
8g4NcnfΓ2 (1 − ε) Γ2 (2 + ε) Γ2 (1 + ε)

(4π)4+2εΓ (4 + 2ε) Γ (1 + 2ε)
(~q 2)2ε

× 1

ε2

(

1 − 3Γ(1 − 2ε)Γ2(1 + 2ε)

2Γ2(1 − ε)Γ(1 + ε)Γ(1 + 3ε)

)

.

It gives:

〈~r|ω̂Q|~r ′〉 = −g
4NcnfΓ2 (1 − ε) Γ2 (2 + ε) Γ2 (1 + ε) Γ(1 + 3ε)

16π5+3εΓ (4 + 2ε) Γ(1 − 2ε)Γ(1 + 2ε)

× 1

ε(~r − ~r ′)2(1+3ε)

(

1 − 3Γ(1 − 2ε)Γ2(1 + 2ε)

2Γ2(1 − ε)Γ(1 + ε)Γ(1 + 3ε)

)
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BFKL and colour dipole

so that

〈~r1~r2|ω̂Q
1 + ω̂Q

2 |~r ′
1~r

′
2〉 = −g

4NcnfΓ2 (1 − ε) Γ2 (2 + ε) Γ2 (1 + ε) Γ(1 + 3ε)

16π5+3εΓ (4 + 2ε) Γ(1 − 2ε)Γ(1 + 2ε)

×
(

1 − 3Γ(1 − 2ε)Γ2(1 + 2ε)

2Γ2(1 − ε)Γ(1 + ε)Γ(1 + 3ε)

)

1

ε

[

δ(~r1 − ~r ′
1)

(~r2 − ~r ′
2)2(1+3ε)

+
δ(~r2 − ~r ′

2)

(~r1 − ~r ′
1)2(1+3ε)

]

.

For the real quark production contribution, omitting the terms with
δ(~r ′

1 − ~r ′
2) and using

1

2εΓ(1 + ε)

1

(~r2 − ~r1)4ε
=

∫

dD−2ρ

π1+ε

(~r2 − ~ρ)(~r1 − ~ρ)

(~r2 − ~ρ)2(1+ε)(~r1 − ~ρ)2(1+2ε)
,

we obtain
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BFKL and colour dipole

〈~r1~r2|
ˆK(R)Q

r |~r ′

1~r
′

2 〉 =
g4Ncnf cR

(4π)2+ε(2π)D−1

21+4εΓ2(2 + ε)Γ(1 + ε))

(3 + 2ε)(1 + ε)ε
×
{

δ(~r2 − ~r ′

2 )

∫

dD−2ρ

[

(~r1 − ~ρ)(~r2 − ~ρ)

(~r2 − ~ρ)2(1+ε)(~r1 − ~ρ)2(1+ε)

(

δ(~r1 − ~r ′
1 )

(~r1 − ~ρ)2ε
−2

δ(~r ′
1 − ~ρ)

(~r2 − ~ρ)2ε
− δ(~r ′

1 − ~ρ)

(~r1 − ~ρ)2ε
− εΓ(1 + ε)

π1+ε(~r ′
1 − ~ρ)2(1+2ε)

)

− 1

(~r1 − ~ρ)2ε

(

δ(~r ′
1 − ~ρ)

(~r2 − ~ρ)2(1+2ε)
− δ(~r2 − ~ρ)

(~r ′
1 − ~ρ)2(1+2ε)

)]

+
εΓ(1 + ε)

π1+ε

(~r2 − ~r ′
2 )

(~r2 − ~r ′
2 )2(1+ε)

×
(

(~r ′
2 − ~r ′

1 )

(~r1 − ~r ′
1 )2(1+2ε)(~r ′

2 − ~r ′
1 )2(1+ε)

+
(~r1 − ~r ′

2 )

(~r1 − ~r ′
2 )2(1+ε)(~r1 − ~r ′

1 )2(1+2ε)

− (~r1 − ~r ′
2 )

(~r1 − ~r ′
2 )2(1+ε)(~r ′

1 − ~r ′
2 )2(1+2ε)

)

+ 1 ↔ 2

}
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Summary
The BFKL approach gives the most common basis for the
theoretical description of small x processes

It is applicable to scattering amplitudes
at any fixed momentum transfer

√
−t and at any colour state in the

t-channel

The basis of the BFKL approach is the
gluon Reggeization

The gluon Reggeization is a remarkable property of QCD, very
important for description of high energy processes

The Reggeization hypothesis is extremely powerful: all scattering
amplitudes are expressed in terms of the gluon trajectory and
several Reggeon vertices
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Summary

Two steps are recently made in the development of the BFKL
approach:

The non-forward BFKL kernel is calculated in the NLO for any
colour state in the t-channel
The gluon Reggeization hypothesis of is proved in the NLA

Work on search of suitable representations for the kernel and on
investigation of its properties is continuing

Particularly interesting is the NLO kernel in the coordinate
representation
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