Improved Gaussian model of QCD vacuum Pion Distribution Amplitude and Form-Factors A. P. Bakulev

Bogolyubov Lab. Theor. Phys., JINR (Dubna, Russia)

Contents

Pion Distribution Amplitude in QCD

Contents

- Pion Distribution Amplitude in QCD
- QCD SRs with Nonlocal Condensates for Pion DA

- Pion Distribution Amplitude in QCD
- QCD SRs with Nonlocal Condensates for Pion DA
- Comparison with CLEO Data on $F_{\gamma^*\gamma \to \pi}(Q^2)$: asymptotic and renormalon models for higher twists

- Pion Distribution Amplitude in QCD
- QCD SRs with Nonlocal Condensates for Pion DA
- Comparison with CLEO Data on $F_{\gamma^*\gamma \to \pi}(Q^2)$: asymptotic and renormalon models for higher twists
- Comparison with JLab Data on $F_{\pi}(Q^2)$ in APT

- Pion Distribution Amplitude in QCD
- QCD SRs with Nonlocal Condensates for Pion DA
- Comparison with CLEO Data on $F_{\gamma^*\gamma \to \pi}(Q^2)$: asymptotic and renormalon models for higher twists
- Comparison with JLab Data on $F_{\pi}(Q^2)$ in APT
- Comparison with Lattice Data on Pion DA

- Pion Distribution Amplitude in QCD
- QCD SRs with Nonlocal Condensates for Pion DA
- Comparison with CLEO Data on $F_{\gamma^*\gamma \to \pi}(Q^2)$: asymptotic and renormalon models for higher twists
- Comparison with JLab Data on $F_{\pi}(Q^2)$ in APT
- Comparison with Lattice Data on Pion DA
- Improved Model for NLCs and Pion DA

- Pion Distribution Amplitude in QCD
- QCD SRs with Nonlocal Condensates for Pion DA
- Comparison with CLEO Data on $F_{\gamma^*\gamma\to\pi}(Q^2)$: asymptotic and renormalon models for higher twists
- Comparison with JLab Data on $F_{\pi}(Q^2)$ in APT
- Comparison with Lattice Data on Pion DA
- Improved Model for NLCs and Pion DA
- Conclusions

Collaborators & Publications

Collaborators

BLTPh, JINR, Dubna

- S. Mikhailov
- A. Pimikov BLTPh, JINR, Dubna
- N. Stefanis ITP-II, Ruhr-Universität Bochum
- A. Karanikas University of Athens, Athens

Publications

- A.B., S.M., N.S. PLB 508 (2001) 279
- A.B., S.M., N.S. PRD 67 (2003) 074012
- A.B., S.M., N.S. PLB 578 (2004) 91
- A.B., N.S. et al. PRD 70 (2004) 033014
- A.B., N.S. NPB 721 (2005) 50
- A.B., A.K., N.S. PRD 72 (2005) 074015
- A.B., S.M., N.S. PRD 73 (2006) 056002

QCD SRs for π Distribution Amplitude

Pion distribution amplitude (DA)

Matrix element of nonlocal axial current on light cone

$$egin{aligned} &\langle 0 \mid ar{d}(z) \gamma_{\mu} \gamma_{5} E(z,0) u(0) \mid \pi(P)
angle \Big|_{z^{2}=0} &= \ &i f_{\pi} P_{\mu} \int_{0}^{1} dx \; e^{i x(zP)} \; arphi_{\pi}^{\mathsf{Tw-2}}(x,\mu^{2}) \end{aligned}$$

Т

gauge-invariance due to Fock–Schwinger string:

$$E(z,0)=\mathcal{P}e^{ig\int_0^z A_\mu(au)d au^\mu}$$

Physical meaning of $\varphi_{\pi}(x; \mu^2)$ — amplitude for transition $\pi \rightarrow u + d$

Representation of Pion DA

• It is convenient to represent the pion DA: $\varphi_{\pi}(x; \mu^2) = \varphi^{\text{As}}(x) \times \\ \times \left[1 + a_2(\mu^2)C_2^{3/2}(2x-1) + a_4(\mu^2)C_4^{3/2}(2x-1) + ...\right]$ where $C_n^{3/2}(2x-1)$ are the Gegenbauer polynomials
(1-loop eigenfunctions of ER-BL kernel)

Representation of Pion DA

- It is convenient to represent the pion DA: $\varphi_{\pi}(x; \mu^2) = \varphi^{\text{As}}(x) \times \\ \times \left[1 + a_2(\mu^2) C_2^{3/2}(2x-1) + a_4(\mu^2) C_4^{3/2}(2x-1) + ... \right]$ where $C_n^{3/2}(2x-1)$ are the Gegenbauer polynomials
 (1-loop eigenfunctions of ER-BL kernel)
- That means

$$\left\{a_2(\mu^2), a_4(\mu^2), \ldots\right\} \Leftrightarrow \varphi_{\pi}(x; \mu^2)$$

Representation of Pion DA

- It is convenient to represent the pion DA: $\varphi_{\pi}(x; \mu^2) = \varphi^{\text{As}}(x) \times \\ \times \left[1 + a_2(\mu^2) C_2^{3/2}(2x-1) + a_4(\mu^2) C_4^{3/2}(2x-1) + ... \right]$ where $C_n^{3/2}(2x-1)$ are the Gegenbauer polynomials
 (1-loop eigenfunctions of ER-BL kernel)
- That means

$$\{a_2(\mu^2), a_4(\mu^2), \ldots\} \Leftrightarrow \varphi_{\pi}(x; \mu^2)$$

ER-BL solution at 2-loop level Mikhailov&Radyushkin; 1986 Müller; 1994–95 A.B.&Stefanis; 2005

Illustration of
 NLC-model: (\bar{q}(0)q(0)

- Illustration of
 NLC-model: (\bar{q}(0)q(0)
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

$$\lambda_q^2 = \left\{ egin{array}{ll} 0.4 \pm 0.1 \ {
m GeV}^2 & [\ {
m QCD} \ {
m SRs}, 1987 \] \ 0.5 \pm 0.05 \ {
m GeV}^2 & [\ {
m QCD} \ {
m SRs}, 1991 \] \ 0.4 - 0.5 \ {
m GeV}^2 & [\ {
m Lattice}, 1998\-2002 \] \end{array}
ight.$$

- Illustration of
 NLC-model: (\bar{q}(0)q(0)
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

$$\lambda_q^2 = \begin{cases} 0.4 \pm 0.1 \text{ GeV}^2 & [\text{ QCD SRs, 1987}] \\ 0.5 \pm 0.05 \text{ GeV}^2 & [\text{ QCD SRs, 1991}] \\ 0.4 - 0.5 \text{ GeV}^2 & [\text{ Lattice, 1998-2002}] \end{cases}$$

• Correlation length $\lambda_q^{-1} \sim \rho$ -meson size

- Illustration of
 NLC-model: (\bar{q}(0)q(0)
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

$$\lambda_q^2 = \begin{cases} 0.4 \pm 0.1 \text{ GeV}^2 & [\text{ QCD SRs, 1987}] \\ 0.5 \pm 0.05 \text{ GeV}^2 & [\text{ QCD SRs, 1991}] \\ 0.4 - 0.5 \text{ GeV}^2 & [\text{ Lattice, 1998-2002}] \end{cases}$$

- Correlation length $\lambda_q^{-1} \sim \rho$ -meson size
- Possible to include second ($\Lambda \simeq 450 \text{ MeV}$) scale with $\langle \bar{q}(0)q(z) \rangle \Big|_{|z|\gg 1 \text{ Fm}} \sim \langle \bar{q}q \rangle e^{-|z|\Lambda}$ (not included here)

$$egin{aligned} T\left(ar{\psi}\psi
ight) &= egin{aligned} ar{\psi}\psi &+:ar{\psi}\psi: & ext{(Wick theorem)}\ \langle T\left(ar{\psi}\psi
ight)
angle &= egin{aligned} i^{-1}\hat{S}_0(x) &+ & ext{?} \end{aligned}$$

$$egin{aligned} T\left(ar{\psi}\psi
ight) &= egin{aligned} ar{\psi}\psi &+:ar{\psi}\psi: & ext{(Wick theorem)} \ \langle T\left(ar{\psi}\psi
ight)
angle &= egin{aligned} i^{-1}\hat{S}_0(x) &+ & ext{?} \end{aligned}$$

$$egin{aligned} T\left(ar{\psi}\psi
ight) &= &ar{\psi}\psi + :ar{\psi}\psi : & ext{(Wick theorem)} \ \langle T\left(ar{\psi}\psi
ight)
angle &= & i^{-1}\hat{S}_0(x) + & ext{?} \end{aligned}$$

 $\begin{array}{l} \textbf{QCD PT} \\ \langle : \bar{\psi}\psi : \rangle \stackrel{\text{def}}{=} 0 \end{array}$

Diagrams for $\langle T(J_{\mu}(z)J_{\nu}(0)) \rangle$

Diagrams for $\langle T(J_{\mu}(z)J_{\nu}(0))\rangle$

SVZ SRs

Diagrams for $\langle T(J_{\mu}(z)J_{\nu}(0))\rangle$

Diagrams for $\langle T(J_{\mu}(z)J_{\nu}(0))\rangle$

SVZ SRs

NLC SRs

Quarks run through vacuum with nonzero momentum

$$k
eq 0: \quad \langle k^2
angle = rac{\langlear\psi D^2\psi
angle}{\langlear\psi\psi
angle} = \lambda_q^2 = 0.35 - 0.55\,{
m GeV}^2$$

Axial-axial correlator

We study correlator:

$$\Pi^{N}_{\mu
u} = i \, \int\!\! d^4x \, e^{iqx} \langle 0 ig| T \left[J^N_{\mu 5}(0) J^+_{
u 5}(x)
ight] ig| 0
angle$$

of two axial currents

$$J^N_{\mu 5}(0) = ar{d}(0) \gamma_\mu \gamma_5 \left[-in
abla
ight]^N u(0) \, ; \, \, J^+_{
u 5}(x) = ar{u}(x) \gamma_
u \gamma_5 d(x)$$

corresponding to charged π -meson. Current $J^{N}_{\mu 5}(0)$ produces

$$\langle 0\mid J^N_{\mu 5}(0)\mid \pi(P)
angle = if_\pi P_\mu \, \left(nP
ight)^N \, \int_0^1 dx \; x^N \, arphi_\pi(x)$$

Axial-axial correlator

We study correlator:

$$\Pi^{N}_{\mu
u} = i \, \int\!\! d^4x \, e^{iqx} \langle 0 ig| T \left[J^N_{\mu 5}(0) J^+_{
u 5}(x)
ight] ig| 0
angle$$

of two axial currents

$$J^N_{\mu 5}(0) = ar{d}(0) \gamma_\mu \gamma_5 \left[-in
abla
ight]^N u(0) \, ; \, \, J^+_{
u 5}(x) = ar{u}(x) \gamma_
u \gamma_5 d(x)$$

corresponding to charged π -meson. Current $J^N_{\mu 5}(0)$ produces

$$\langle 0 \mid J^N_{\mu 5}(0) \mid \pi(P)
angle = i f_\pi P_\mu \, \left(n P
ight)^N \, \langle x^N
angle_\pi$$

NLC QCD SR for Pion DA

Here is example of QCD SR with Non-Local Condensates

$$egin{aligned} f_{\pi}^2\,arphi_{\pi}(x) &= \int_{-0}^{s_0}
ho^{\mathsf{pert}}(x;s)\,e^{-s/M^2}ds + rac{lpha_s GG
angle}{24\pi M^2}\,arphi_G(x;\Delta) \ &+ rac{16\pilpha_s \langle ar q q
angle^2}{81M^4} \sum_{i=2V,3L,4Q}arphi_i(x;\Delta) \end{aligned}$$

Local limit: $\lambda_q^2/M^2 \equiv \Delta \rightarrow 0$,

$$egin{array}{rll} arphi_G(x;\Delta)&=&[\delta(x)+\delta(1-x)]\ arphi_{2V}(x;\Delta)&=&[x\delta'(1-x)+(1-x)\delta'(x)]\ arphi_{4Q}(x;\Delta)&=&9[\delta(x)+\delta(1-x)] \end{array}$$

NLC contributions to QCD SR

Examples for Gaussian NLC with a single parameter λ_q^2

Local limit: $\lambda_q^2/M^2 \equiv \Delta \rightarrow 0$,

$$\varphi_{4Q}^{\rm loc}(x)\equiv \lim_{\Delta\to 0}\varphi_{4Q}^{\rm NLC}(x;\Delta)=9[\delta(x)+\delta(1-x)]$$

NLC SRs for pion DA

Moments
$$\langle \xi^N \rangle_{\pi} = \int_0^1 \varphi_{\pi}(x) \left(2x - 1\right)^N dx$$
 at $\mu^2 \approx 1 \text{ GeV}^2$

NLC SRs for Pion DA

produce **bunch** of self-consistent 2-parameter models $\varphi_{\pi}(x)$ at $\mu^2 \simeq 1 \text{ GeV}^2$:

$$arphi_{\pi}(x) = arphi^{\mathsf{As}}(x) \left[1 + oldsymbol{a_2} \ C_2^{3/2}(2x-1) + oldsymbol{a_4} \ C_4^{3/2}(2x-1)
ight]$$

NLC SR estimate of $\langle x^{-1} \rangle_{\pi}^{SR}$

BMS [PLB (2001)]: at $\mu^2 \simeq 1 \text{ GeV}^2$

The moment $\langle x^{-1} \rangle_{\pi}^{SR}$ could be determined only in NLC SRs because end-point singularities absent

BMS vs CZ distribution amplitude

BMS DA is end-point suppressed!

BMS vs CZ distribution amplitude

CZ DA: end-point enhancement

BMS vs CZ distribution amplitude

BMS bunch is 2-humped, but end-point suppressed!

Histograms for inverse moment $\langle x^{-1} \rangle_{\pi}$

Contributions of different DAs to inverse moment $\langle x^{-1} \rangle_{\pi}$, calculated as $\int_{x}^{x+0.02} \phi(x) dx$ and normalized to 100%, for:

In **BMS** case region $x \leq 0.1$ contributes even less than in Asymptotic DA case.

NLC SR Constraints on a_2, a_4 of Pion DA

$\begin{array}{l} {\sf NLO \ Light-Cone \ SRs \Rightarrow} \\ {\sf CLEO \ data \ on \ } F_{\gamma\gamma^*\pi}(Q^2) \Rightarrow \\ {\sf Constraints \ on \ Pion \ DA} \end{array}$

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

For $Q^2 \gg m_{\rho}^2$, $q^2 \ll m_{\rho}^2$ pQCD factorization valid only in leading twist and higher twists are of importance [Radyushkin–Ruskov, NPB (1996)]. Reason: if $q^2 \rightarrow 0$ one needs to take into account

interaction of real photon at long distances $\sim O(1/\sqrt{q^2})$

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

For $Q^2 \gg m_\rho^2$, $q^2 \ll m_\rho^2$ pQCD factorization valid only in leading twist and higher twists are of importance **[Radyushkin–Ruskov, NPB (1996)]**. Reason: if $q^2 \rightarrow 0$ one needs to take into account interaction of real photon at long distances ~ $O(1/\sqrt{q^2})$

$\gamma^* \gamma \rightarrow \pi$: Light-Cone Sum Rules!

Khodjamirian **[EJPC (1999)]**: LCSR effectively accounts for long-distances effects of real photon using quark-hadron duality in vector channel and dispersion relation in q^2

$$egin{aligned} F_{\gamma\gamma^{*}\pi}(Q^{2}, q^{2}) &=& rac{1}{\pi} \int_{0}^{s_{0}} rac{\mathsf{Im} F_{\gamma^{*}\gamma^{*}\pi}^{\mathsf{PT}}(Q^{2}, s)}{m_{
ho}^{2} + q^{2}} e^{(m_{
ho}^{2} - s)/M^{2}} ds \ &+& rac{1}{\pi} \int_{s_{0}}^{\infty} rac{\mathsf{Im} F_{\gamma^{*}\gamma^{*}\pi}^{\mathsf{PT}}(Q^{2}, s)}{s + q^{2}} ds \end{aligned}$$

 $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter ($0.5 - 0.9 \text{ GeV}^2$). Real-photon limit $q^2 \rightarrow 0$ can be easily done ...

$\gamma^* \gamma \rightarrow \pi$: Light-Cone Sum Rules!

Khodjamirian **[EJPC (1999)]**: LCSR effectively accounts for long-distances effects of real photon using quark-hadron duality in vector channel and dispersion relation in q^2

$$egin{aligned} F_{\gamma\gamma^*\pi}(Q^2,0) &= & rac{1}{\pi} \int_0^{s_0} rac{{
m Im} F_{\gamma^*\gamma^*\pi}^{{
m PT}}(Q^2,s)}{m_
ho^2} e^{(m_
ho^2-s)/M^2} ds \ &+ & rac{1}{\pi} \int_{s_0}^\infty rac{{
m Im} F_{\gamma^*\gamma^*\pi}^{{
m PT}}(Q^2,s)}{s} ds \end{aligned}$$

 $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter (0.5 – 0.9 GeV²). ... as demonstrated here.

Revision of CLEO data analysis

• Accurate NLO evolution for both $\varphi(x, Q_{exp}^2)$ and $\alpha_s(Q_{exp}^2)$, taking into account quark thresholds;

Revision of CLEO data analysis

- Accurate NLO evolution for both $\varphi(x, Q_{exp}^2)$ and $\alpha_s(Q_{exp}^2)$, taking into account quark thresholds;
- The relation between "nonlocality"scale and twist-4 magnitude $\delta_{\text{Tw-4}}^2 \approx \lambda_q^2/2$ was used to re-estimate $\delta_{\text{Tw-4}}^2 = 0.19 \pm 0.02$ at $\lambda_q^2 = 0.4 \text{ GeV}^2$;

Revision of CLEO data analysis

- Accurate NLO evolution for both $\varphi(x, Q_{exp}^2)$ and $\alpha_s(Q_{exp}^2)$, taking into account quark thresholds;
- The relation between "nonlocality"scale and twist-4 magnitude $\delta_{\text{Tw-4}}^2 \approx \lambda_q^2/2$ was used to re-estimate $\delta_{\text{Tw-4}}^2 = 0.19 \pm 0.02$ at $\lambda_q^2 = 0.4 \text{ GeV}^2$;
- Constraints on $\langle x^{-1} \rangle_{\pi}$ from CLEO data.

NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]

No agreement with CLEO data for $\lambda_q^2 = 0.6 \text{ GeV}^2$

NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]

Bad agreement with CLEO data for $\lambda_q^2 = 0.5 \text{ GeV}^2$

NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]

Good agreement with CLEO data for $\lambda_q^2 = 0.4 \text{ GeV}^2$

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of $\delta^2_{\text{Tw-4}}$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$, $\delta^2_{\text{Tw-4}} = 0.19(4) \text{ GeV}^2$

+ = best-fit point

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of $\delta^2_{\text{Tw-4}}$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$, $\delta^2_{\text{Tw-4}} = 0.19(4)$ GeV

Even with 20% uncertainty in twist-4 CZ DA excluded <u>at least</u> at 4σ -level! As DA — at 3σ -level.

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of $\delta^2_{\text{Tw-4}}$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$, $\delta^2_{\text{Tw-4}} = 0.19(4) \text{ GeV}^2$

= best-fit point
 = Asymptotic DA
 = CZ DA
 X = BMS model

CZ DA excluded <u>at least</u> at 4σ -level! As DA — at 3σ -level. BMS DA and most of **BMS bunch** — inside 1σ -domain.

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of δ^2_{Tw-4} BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$, $\delta^2_{Tw-4} = 0.19(4) \text{ GeV}^2$

BMS DA and most of **BMS bunch** — inside 1σ -domain. Instanton-based models — near 3σ -boundary (**PR**-model is close to 2σ -boundary).

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of $\delta^2_{\text{Tw-4}}$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$, $\delta^2_{\text{Tw-4}} = 0.19(4) \text{ GeV}^2$

BMS DA and most of **BMS bunch** — inside 1σ -domain. **Transverse lattice** model — near 3σ -boundary.

New CLEO data constraints for $\langle x^{-1} \rangle_{\pi}$

BMS [PLB 578 (2004) 91]: evolution to $\mu^2 = 1 \text{ GeV}^2$

$$egin{aligned} \lambda_q^2 &= 0.4 \; \mathsf{GeV}^2, \ rac{1}{3} \langle x^{-1}
angle_\pi^{\mathsf{SR}} - 1 &= 0.1 \pm 0.1 \end{aligned}$$

See also Bijnens&Khodjamirian [EPJC (2002)]: $\frac{1}{3}\langle x^{-1}
angle_{\pi} - 1 = 0.24\pm0.16$

Again: Good agreement of a theoretical "tool" of different origin with CLEO data

LCSR vs. CELLO () & CLEO () data

BMS bunch describes rather well all data for $Q^2 \gtrsim 1.5 \text{ GeV}^2$.

Diffractive Dijet Production

What can add E791 data (how much time we have?)

E791: Diffractive dijet production

Frankfurt et al. [PLB (1993)]: Rough estimations Braun et al. [NPB (2002)]: Account for hard GEXs

E791: Good agreement with BMS bunch

Our bunch of pion DAs has maximum uncertainty in the central region, but **agrees well** with E791 data!

JLab data for $F_{\pi}(Q^2)$ in Analytic NLO pQCD

Analyticization means procedure to obtain analyticity of hadronic observables in whole Q^2 region via dispersion relations (**Radyushkin**, **Krasnikov&Pivovarov**, **Dokshitzer**, **Beneke&Braun**, **Shirkov&Solovtsov**): Analytization combines

 RG invariance —> resummation of UV logs and correct QCD asymptotics

Analyticization means procedure to obtain analyticity of hadronic observables in whole Q^2 region via dispersion relations (**Radyushkin**, **Krasnikov&Pivovarov**, **Dokshitzer**, **Beneke&Braun**, **Shirkov&Solovtsov**): Analytization combines

- RG invariance —> resummation of UV logs and correct QCD asymptotics
- Causality => spectral representation => no Landau singularity

Analytic Perturbation Theory expresses QCD observables over non-power sequences $\{\mathcal{A}_{k}^{(L)}(Q^{2})\}$ in *L*-loop order [Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

$$\mathcal{A}_k^{(1)}(Q^2) = \frac{1}{\pi} \int_0^\infty \frac{\rho_k^{(1)}(\sigma) \, d\sigma}{\sigma + Q^2 - i\epsilon} \, ; \, \rho_k^{(1)}(\sigma) = \mathsf{Im}\left(\frac{4\pi}{b_0 \, \ln(-\sigma/\Lambda^2)}\right)^k$$

Analytic Perturbation Theory expresses QCD observables over non-power sequences $\{\mathcal{A}_{k}^{(L)}(Q^{2})\}$ in *L*-loop order [Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

$$\mathcal{A}_k^{(1)}(Q^2) = \frac{1}{\pi} \int_0^\infty \frac{\rho_k^{(1)}(\sigma) \, d\sigma}{\sigma + Q^2 - i\epsilon} \, ; \, \rho_k^{(1)}(\sigma) = \operatorname{Im}\left(\frac{4\pi}{b_0 \, \ln(-\sigma/\Lambda^2)}\right)^k$$

with 1-loop explicit expressions

•
$$\mathcal{A}_1^{(1)}(Q^2) = rac{4\pi}{b_0} \left[rac{1}{\ln(Q^2/\Lambda^2)} + rac{\Lambda^2}{\Lambda^2 - Q^2} \right]$$

Analytic Perturbation Theory expresses QCD observables over non-power sequences $\{\mathcal{A}_{k}^{(L)}(Q^{2})\}$ in *L*-loop order [Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

$$\mathcal{A}_k^{(1)}(Q^2) = \frac{1}{\pi} \int_0^\infty \frac{\rho_k^{(1)}(\sigma) \, d\sigma}{\sigma + Q^2 - i\epsilon} \, ; \, \rho_k^{(1)}(\sigma) = \mathsf{Im}\left(\frac{4\pi}{b_0 \, \ln(-\sigma/\Lambda^2)}\right)^k$$

with 1-loop explicit expressions

•
$$\mathcal{A}_{1}^{(1)}(Q^{2}) = \frac{4\pi}{b_{0}} \left[\frac{1}{\ln(Q^{2}/\Lambda^{2})} + \frac{\Lambda^{2}}{\Lambda^{2} - Q^{2}} \right]$$

• $\mathcal{A}_{2}^{(1)}(Q^{2}) = \left(\frac{4\pi}{b_{0}}\right)^{2} \left[\frac{1}{\ln^{2}(Q^{2}/\Lambda^{2})} + \frac{Q^{2}\Lambda^{2}}{(\Lambda^{2} - Q^{2})^{2}} \right]$

Analytic Perturbation Theory expresses QCD observables over non-power sequences $\{\mathcal{A}_{k}^{(L)}(Q^{2})\}$ in *L*-loop order [Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

$$\mathcal{A}_k^{(1)}(Q^2) = \frac{1}{\pi} \int_0^\infty \frac{\rho_k^{(1)}(\sigma) \, d\sigma}{\sigma + Q^2 - i\epsilon} \, ; \, \rho_k^{(1)}(\sigma) = \mathsf{Im}\left(\frac{4\pi}{b_0 \, \ln(-\sigma/\Lambda^2)}\right)^k$$

Important:
$$\mathcal{A}_2(Q^2) \neq \left[\mathcal{A}_1(Q^2)\right]^2$$

Pion form factor in analytic NLO pQCD

[AB-Passek-Schroers-Stefanis, PRD 70 (2004) 033014]

Practical independence on scheme/scale setting!
Pion form factor in analytic NLO pQCD

[AB-Passek-Schroers-Stefanis, PRD 70 (2004) 033014]

Practical independence on scheme/scale setting!

Pion FF in analytic NLO pQCD

Green strip includes

- NLC QCD SRs uncertainties (pion DA bunch);
- scale-setting ambiguities at NLO level.

New Lattice Data for pion DA

Revised CLEO Constraints and Lattice Data

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of δ^2_{Tw-4} : $\delta^2_{Tw-4} = 0.19 \pm 0.04 \text{ GeV}^2$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$

- 🕂 = best-fit point
- Asymptotic DA
- = CZ DA
- **X** = BMS model
- \Leftrightarrow , \blacktriangle and \diamondsuit = instantons

BMS DA and most of **BMS bunch** — inside 1σ -domain. **Transverse lattice** model — near 3σ -boundary.

Revised CLEO Constraints and Lattice Data

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of $\delta^2_{\text{Tw-4}}$: $\delta^2_{\text{Tw-4}} = 0.19 \pm 0.04 \text{ GeV}^2$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$

BMS DA and most of **BMS bunch** — inside 1σ -domain and inside 2004 lattice strip [PRD 73 (2006) 056002].

Revised CLEO Constraints and Lattice Data

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of δ^2_{Tw-4} : $\delta^2_{Tw-4} = 0.19 \pm 0.04 \text{ GeV}^2$ BMS [PLB 578 (2004) 91]: $\lambda^2_q = 0.4 \text{ GeV}^2$

BMS DA and most of **BMS bunch** — 1σ -domain and 1/2 inside 2005 lattice strip [PRD 73 (2006) 056002].

Renormalon Model and CLEO Constraints

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 20% uncertainty of δ^2_{Tw-4} : $\delta^2_{Tw-4} = 0.19 \pm 0.04 \text{ GeV}^2$ BMS [PRD 73 (2006) 056002]: $\lambda^2_q = 0.4 \text{ GeV}^2$

- 🕂 = best-fit point
- Asymptotic DA
- = CZ DA
- **X** = BMS model
- \Leftrightarrow , **\blacktriangle** and \diamondsuit = instantons
- = transverse lattice

gray strip = lattice'05 result

BMS DA and most of **BMS bunch** — inside 1σ -domain and 1/2 inside 2005 lattice strip. Dashed contour = renormalon model estimation of CLEO data.

Improved Model for NLCs and Consequences for Pion DA

Parameterization for scalar and vector condensates:

$$egin{aligned} &\langlear{\psi}(0)\psi(x)
angle &=&\langlear{\psi}\psi
angle \int\limits_{0}^{\infty} egin{aligned} f_{S}(lpha) \,e^{lpha x^{2}/4}\,dlpha\,;\ &\langlear{\psi}(0)\gamma_{\mu}\psi(x)
angle &=& -ix_{\mu}A_{0}\int\limits_{0}^{\infty} egin{aligned} f_{V}(lpha) \,e^{lpha x^{2}/4}\,dlpha\,,\ & ext{where }A_{0} &=& 2lpha_{s}\pi\langlear{\psi}\psi
angle^{2}/81. \end{aligned}$$

Convenient to parameterize the 3-local condensate in fixed-point gauge by introduction of three scalar functions:

$$egin{aligned} &\langlear{\psi}(0)\gamma_{\mu}(-g\widehat{A}_{
u}(x))\psi(y)
angle &= (x_{\mu}y_{
u}-g_{\mu
u}(xy))\overline{M}_{1}\ &+ (x_{\mu}x_{
u}-g_{\mu
u}x^{2})\overline{M}_{2}\,;\ &\langlear{\psi}(0)\gamma_{5}\gamma_{\mu}(-g\widehat{A}_{
u}(x))\psi(y)
angle &= iarepsilon_{\mu
u xy}\overline{M}_{3}\,, \end{aligned}$$

with

$$\overline{M}_{i}(y^{2}, x^{2}, (x - y)^{2}) =$$

$$A_{i} \iiint_{0}^{\infty} d\alpha_{1} d\alpha_{2} d\alpha_{3} f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}) e^{(\alpha_{1}y^{2} + \alpha_{2}x^{2} + \alpha_{3}(x - y)^{2})/4}$$
where $A_{i} = \{-\frac{3}{2}, 2, \frac{3}{2}\}A_{0}$ [Mikhailov&Radyushkin'89].

The minimal Gaussian ansatz:

 $f_S(lpha)=\delta\left(lpha-\Lambda
ight);\;\;\; f_V(lpha)=\delta^{\,\prime}(lpha-\Lambda);\;\;\;\Lambda\equiv\lambda_q^2/2;$

 $f_{i}\left(lpha_{1},lpha_{2},lpha_{3}
ight)=\delta\left(lpha_{1}-\Lambda
ight)\,\delta\left(lpha_{2}-\Lambda
ight)\,\delta\left(lpha_{3}-\Lambda
ight)\,.$

Only one parameter $\lambda_q^2 = 0.35 - 0.55 \text{ GeV}^2$.

The minimal Gaussian ansatz:

 $f_S(lpha)=\delta\left(lpha-\Lambda
ight);\;\;\; f_V(lpha)=\delta^{\,\prime}(lpha-\Lambda);\;\;\;\Lambda\equiv\lambda_q^2/2;$

 $f_i(lpha_1, lpha_2, lpha_3) = \delta(lpha_1 - \Lambda) \, \delta(lpha_2 - \Lambda) \, \delta(lpha_3 - \Lambda) \; .$

Only one parameter $\lambda_q^2 = 0.35 - 0.55 \text{ GeV}^2$.

Problems:

- QCD equations of motion are violated
- Vector current correlator is not transverse
 ⇒ gauge invariance is broken

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\left(1+X_i\partial_x+Y_i\partial_y+Z_i\partial_z
ight)\delta\left(lpha_1-x\Lambda
ight)\delta\left(lpha_2-y\Lambda
ight)\delta\left(lpha_3-z\Lambda
ight)$

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\left(1+X_i\partial_x+Y_i\partial_y+Z_i\partial_z
ight)\delta\left(lpha_1-x\Lambda
ight)\delta\left(lpha_2-y\Lambda
ight)\delta\left(lpha_3-z\Lambda
ight)$

What does it give us?

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\left(1+X_i\partial_x+Y_i\partial_y+Z_i\partial_z
ight)\delta\left(lpha_1-x\Lambda
ight)\delta\left(lpha_2-y\Lambda
ight)\delta\left(lpha_3-z\Lambda
ight)$

What does it give us?

• If $12 (X_2 + Y_2) - 9 (X_1 + Y_1) = 1$, x + y = 1, than QCD equations of motion are satisfied;

We modify functions f_i : $f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) =$

 $\left(1+X_i\partial_x+Y_i\partial_y+Z_i\partial_z
ight)\delta\left(lpha_1-x\Lambda
ight)\delta\left(lpha_2-y\Lambda
ight)\delta\left(lpha_3-z\Lambda
ight)$

What does it give us?

- If $12 (X_2 + Y_2) 9 (X_1 + Y_1) = 1$, x + y = 1, than QCD equations of motion are satisfied;
- We minimize nontransversity of polarization operator by special choice of model parameters:

$$X_1 \;\; = \;\; -0.082\,;\; Y_1 = Z_1 = -2.243\,;\; x = 0.788\,;$$

 $X_2 = -1.298; Y_2 = Z_2 = -0.239; y = 0.212;$

 $X_3 = +1.775; Y_3 = Z_3 = -3.166; z = 0.212.$

The **improved Gaussian model** makes violation of polarization operator transversity **100 times smaller** as compared with the **minimal model**.

The **improved Gaussian model** makes violation of polarization operator transversity **100 times smaller** as compared with the **minimal model**.

The **improved Gaussian model** makes violation of polarization operator transversity **100 times smaller** as compared with the **minimal model**.

Improved Pion DAs vs. CLEO Constraints

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 10% uncertainty of $\delta^2_{\text{Tw-4}}$: $\delta^2_{\text{Tw-4}} = 0.19 \pm 0.02 \text{ GeV}^2$ [PRD 73 (2006) 056002]: $\lambda^2_q = 0.4 \text{ GeV}^2$

- + = best-fit point
- Asymptotic DA
- = CZ DA
- **X** = BMS model
- \Leftrightarrow , **\blacktriangle** and \diamondsuit = instantons
- = transverse lattice

gray strip = lattice'05 result

BMS DA and most of **BMS bunch** — inside 1σ -domain and 1/2 inside lattice strip. Dashed contour = renormalon model estimation of CLEO data [PRD 73 (2006) 056002].

Improved Pion DAs vs. CLEO Constraints

NLO Light-Cone SR \oplus Twist-4 $\oplus (\mu^2 = Q^2)$ with 10% uncertainty of $\delta^2_{\text{Tw-4}}$: $\delta^2_{\text{Tw-4}} = 0.19 \pm 0.02 \text{ GeV}^2$ [PRD 73 (2006) 056002]: $\lambda^2_q = 0.4 \text{ GeV}^2$

Most of **improved BMS bunch** — inside 1σ -domain and inside **lattice strip**. **Dashed contour** = renormalon model estimation of CLEO data.

• QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.
- Comparing NLC SRs with new CLEO constraints allows to fix the value of QCD vacuum nonlocality $\lambda_q^2 = 0.4 \text{ GeV}^2$.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.
- Comparing NLC SRs with new CLEO constraints allows to fix the value of QCD vacuum nonlocality $\lambda_q^2 = 0.4 \text{ GeV}^2$.
- This bunch of pion DAs agrees well with E791 data on diffractive dijet production, with JLab F(pi) data on pion EM form factor and with recent lattice data.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.
- Comparing NLC SRs with new CLEO constraints allows to fix the value of QCD vacuum nonlocality $\lambda_q^2 = 0.4 \text{ GeV}^2$.
- This bunch of pion DAs agrees well with E791 data on diffractive dijet production, with JLab F(pi) data on pion EM form factor and with recent lattice data.
- Taking into account QCD Equations of Motions for NLCs and transversity of Vacuum Polarization puts the pion DA bunch just inside 1σ-ellipse of CLEO-data constraints.