What happens if the particles coming into the Van der Graaf machine are saturated (humid wet weather)? Do they spark?
In humid weather, the charged particles still enter the metal sphere of the van der Graaf generator, but they find it relatively easy to leave. The moisture provides electrically conducting paths through which they can escape from the sphere.
When the bowling ball hits the wall, is it doing work on the wall?
If the wall doesn't move at all, no. Work requires both a force and a movement in the direction of that force. But in reality, the wall will certainly move at least a short distance. When it does, it moves in the direction of the force on it and the ball is doing work on the wall.
Why does a rubber ball transfer more forward momentum as the ball rebounds off an object? (From pg. 57 in the book)
As the ball hits a wall and stops, it transfers its forward momentum to the wall. The ball pushes the wall forward for a certain time and thus provides a forward impulse to the wall. As the ball rebounds from the wall, it also pushes the wall forward for a certain time and thus provides an additional forward impulse to the wall. The ball ends up traveling in the opposite direction from that which it had initially, so its momentum points in the opposite direction. This reversal of momentum required an enormous transfer of forward momentum to the wall; so large that the ball actually ended up with a negative amount of forward momentum (which is equivalent to a positive amount of backward momentum).
If all the kids on the merry-go-round are clustered around its center while it is spinning at a constant angular velocity, then if all the kids were to "cautiously" move away from its pivot to the outer edges (while still spinning), would that cause the merry-go-round to slow down faster than if they had remained in the center?
Yes. When the kids move away from the center, the merry-go-round will slow down. If they then return to the center, the merry-go-round will speed up!
Can you give me an example of when the angular acceleration is in a different direction from the torque applied?
When an object isn't symmetric, it can rotate in very peculiar ways. If you throw a tennis racket into the air so that it is spinning about an axis that isn't along the handle or at right angles to the handle, it will wobble in flight. Its axis of rotation will actually change with time as it wobbles. If you were to exert a torque on this wobbling tennis racket, its angular acceleration wouldn't necessarily be along the direction of the torque.