4. A mass \(m = 0.10 \text{ kg} \) is in uniform circular motion, radius \(R = 1.0 \text{ m} \) and angular speed \(\omega_i = 5.0 \text{ rad/s} \), on a horizontal air table (no friction). It can do this because it is attached to a string that passes through a hole in the table located in the middle of the circular path and to which a mass \(M \) is attached below the table, hanging from the end of the string.

A. (5 pts) What is the value of \(M \)?

(a) 0.050 kg.
(b) 2.5 kg.
**(c) 0.25 kg.
(d) 0.50 kg.

\[
\text{Hanging mass provides tension in the string to account for uniform \(\omega \) motion centrifugal accel \(\omega^2 R \)}
\]
\[
\Rightarrow \quad M g = m \omega^2 R \Rightarrow M = \frac{m \omega^2 R}{g}
\]
\[
= \frac{(0.1 \text{ kg})(5 \text{ rad/s})^2(1.0 \text{ m})}{(10 \text{ m/s}^2)} = 0.25 \text{ kg}
\]

B. (5 pts) A small additional mass \(AM \) is added to \(M \), and these masses drop a distance \(h = 1 \text{ cm} \) before the system comes to a new equilibrium, uniform circular motion with a different radius and angular speed. What is the new angular speed?

(a) 5.00 rad/s.
**(b) 5.10 rad/s.
(c) 5.25 rad/s.
(d) 4.90 rad/s.

Angular mom. about hole in center of table is conserved - no torque about this point. If \(i \) and \(f \) refer init and final, then

\[
L_{i} = \sum \text{mom.} R_{i} = \sum \text{mom.} R_{f}
\]
\[
mw_i R_i^2 = mw_f R_f^2
\]
\[
\Rightarrow \quad \omega_f = \omega_i \left(\frac{R_i}{R_f} \right)^2 = \omega_i \left(\frac{R_i}{R_i-h} \right)^2 = \omega_i \left(\frac{100 \text{ cm}}{99 \text{ cm}} \right)^2 = 1.02
\]
\[
= 5(1.02) = 5.1 \text{ rad/s}
\]