5. Two automobiles, each of mass M and moving with (small) speed V, collide at an intersection. Automobile A comes from the south and automobile B comes from the East.

They stick together after the collision.
A. (3 pts) Is mechanical energy lost in the collision?
**(a). Yes
Completely inelastic!
(b). No

(c) Cannot tell.
B. (3 pts) Is momentum conserved in the collision? Always, if the system is violated.
**(a) Yes
(b) No
(c) Cannot tell
C. (4 pts) What is the speed of the stuck-together mass immediately after thecollision?
(a) V.
(b) $\sqrt{2} V$.
**(c) $V / \sqrt{2}$.
C.m. see., unchanged

$$
\vec{V}_{c m}=\frac{M_{A} \vec{V}_{A}+M_{B} \vec{V}_{B}}{M_{A}+M_{B}}
$$

(d) $V / 2$.

$$
\begin{aligned}
& =\frac{M_{A}(0, V, 0)+M_{B}(-V, 0,0)}{M_{A}+M_{B}} \\
M_{A}=M_{B} & =\frac{V}{2}(-1,1,0) \\
& =\vec{V}_{c m} \text { after, } \\
\text { Magnitude } & =\text { speed }-\sqrt{\frac{V^{2}}{4}(1+1)}=\sqrt{\frac{1}{2} V^{2}}=\frac{V}{\sqrt{2}}
\end{aligned}
$$

