3. A boxcar of length 8 m is at rest on horizontal frictionless rails. Inside the boxcar, whose mass is 3200 kg , a massless tank containing 2400 kg of water is located at the lefthand end. The tank is 1 m long. In this problem we worry only about the horizontal coordinate, and we ignore all effects of friction.
A. (5 pts) The center of mass of this system is located

(a) 9 m to the right of the left-hand end of the boxcar, and 1.2 m up from the floor. **(b) 2.5 m to the right of the left hand end of the boxcar.
(c) At the middle of the boxcar.
(d) 2.28 m to the right of the left hand end of the boxcar. If $L H$ and $A \mathrm{con}$ is at

E (5 pts) At som point, the wails of to tank stat leak anu tue waw.: ion the boxcar uniformly. Assuming that all the water stays the boxcar, d es breakage of the tank manifests itself to an outside obs er stand o atside the sy **(a) The boxcar moves to the left a little and comes t
(b) The boxcar moves to the left and since there are no outside forces* in on continues to move to the left.
(c) There is no external clue as to what has happened
(d) The boxcar moves to the right.
all forces are internal. No way t move the c.m., which stats at aet. Sine in leaking out the water move right, the can has t mot bel t leave the com. unchanged. Once the water is spread as much as it goons t be, all comer t mit again

