1. A uniform rod 1 m long with mass 0.6 kg is pivoted at one end, as shown, and released from a horizontal position.

A. (5 pts) What is the direction of the torque exerted by gravity about the pivot point?
(a) out of the page **(b) into the page.
(c) to the right.
(d) to the left
 wain, hence by RH rule, int page
B. (5 pts) What is the magnitude of the torque exerted by gravity about the pivot po int as a function of the angle θ that the rod makes with the horizontal direction?
(a) $5.8 \cos \theta \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.

(b) $5.8 \sin \theta \cos \theta \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.
(c) $2.9 \sin \theta \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.
$* *(\mathrm{~d}) 2.9 \cos \theta \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.
Z magnitude

$$
\begin{aligned}
& =m g \times \text { leven arm } \\
& =\operatorname{mg} \frac{\ell}{2} \cos \theta \\
& (0.6 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(0.5 \mathrm{n}) \\
& =2.9 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

