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APPENDIX D 
ACCURACY OF MEASUREMENTS AND 

TREATMENT OF EXPERIMENTAL UNCERTAINTY 
 “A measurement whose accuracy is unknown has no use whatever. It is therefore necessary to 
know how to estimate the reliability of experimental data and how to convey this information to 
others.” —E. Bright Wilson, Jr., An Introduction to Scientific Research 

Our mental picture of a physical quantity is that there exists some unchanging, underlying value.  
It is through measurements we try to find this value.  Experience has shown that the results of 
measurements deviate from these "true" values.  The purpose of this Appendix is to address how 
to use measurements to best estimate the "true" values and how to estimate how close the meas-
ured value is likely to be to the "true" value.  Our understanding of experimental uncertainty (i.e., 
errors) is based on the mathematical theory of probability and statistics, so the Appendix also 
includes some ideas from this subject.  This Appendix also discusses the notation that scientists 
and engineers use to express the results of such measurements. 

ACCURACY AND PRECISION 
According to many dictionaries, "accuracy" and "precision" are synonyms.  To scientists, how-
ever, they refer to two distinct (yet closely related) concepts.  When we say that a measurement 
is "accurate", we mean that it is very near to the "true" value.  When we say that a measurement 
is "precise", we mean that it is very reproducible.  [Of course, we want to make accurate AND 
precise measurements.]  Associated with each of these concepts is a type of error. 

Systematic errors are due to problems with the technique or measuring instrument.  For example, 
many of the rulers found in labs have worn ends.  One can make very precise (reproducible) 
measurements that are quite inaccurate (far from the true value). 

Random errors are caused by fluctuations in the very quantities that we are measuring.  You 
could have a well calibrated pressure gauge, but if the pressure is fluctuating, your reading of the 
gauge, while perhaps accurate, would be imprecise (not very reproducible). 

Through careful design and attention to detail, we can usually eliminate (or correct for) system-
atic errors.  Using the worn ruler example above, we could either replace the ruler or we could 
carefully determine the "zero offset" and simply add it to our recorded measurements. 

Random errors, on the other hand, are less easily eliminated or corrected.  We usually have to 
rely upon the mathematical tools of probability and statistics to help us determine the "true" 
value that we seek.  Using the fluctuating gauge example above, we could make a series of inde-
pendent measurements of the pressure and take their average as our best estimate of the true 
value. 

Measurements of physical quantities are expressed in numbers.  The numbers we record are 
called data, and numbers we compute from our data are called statistics*. 

                                                 
* A statistic is by definition a number we can compute from a set of data. An example is the av-
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PROBABILITY 
Scientists base their treatment of random errors on the theory of probability. We do not have 
room here for a lengthy survey of this fundamental subject, but can only touch on some high-
lights. Probability concerns random events (such as the measurements described above).  To 
some events we can assign a theoretical, or a priori, probability.  For instance, the probability of 
a “perfect” coin landing heads or tails is ½ for each of the two possible outcomes; the a priori 
probability of a “perfect” die* falling with a particular one of its six sides uppermost is 6

1 . 

These examples illustrate four basic principles about probability:  

1. The possible outcomes have to be mutually exclusive. If a coin lands heads, it does not 
land tails, and vice versa. 

2. The list of outcomes has to exhaust all possibilities. In the example of the coin we implic-
itly assumed that the coin neither landed on its edge, nor could be evaporated by a light-
ning bolt while in the air, or any other improbable, but not impossible, potential outcome. 
(And ditto for the die.) 

3. Probabilities are always numbers between zero and one, inclusive. A probability of one 
means the outcome always happens, while a probability of zero means the outcome never 
happens.  There is no meaning to a probability larger than one, since something cannot 
happen more often than every possible time.  Similarly, there is no meaning to a probabil-
ity smaller than zero, since something cannot happen less often than never. 

4. When all possible outcomes are included, the sum of the probabilities of each exclusive 
outcome is one. That is, the probability that something happens is one. So if we flip a fair 
coin, the probability that it lands heads or tails is ½ + ½ = 1. If we toss a fair die, the 
probability that it lands with 1, 2, 3, 4, 5, or 6 spots showing is 
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The mapping of a probability to each possible outcome is called a probability distribution.  Just 
as our mental picture of there being a "true" value that we can only estimate, we also envision a 
"true" probability distribution that we can, again, only estimate through observation.  Using the 
coin flip example to illustrate, if we flip the coin four times, we should not be too surprised to get 
heads only once.  Our estimate of the probability distribution would then be 1

4  for heads and 3
4  

for tails.  We do expect that our estimate would improve as the number of flips† gets "large".  In 
fact, it is only in the limit of an infinite number of flips that we can expect to approach the theo-
retical, "true" probability distribution. 

The probability distributions we've discussed so far have been for discrete possible outcomes 
(coin flips and die tosses).  When we measure quantities that are not necessarily discrete (such as 
pressure read from an analog gauge), our probability distributions become more correctly termed 

                                                                                                                                                             
erage, or mean. Another is the variance, which we shall define below. 
* …one of a pair of dice. 
† Each flip is, in the language of statistics, called a trial.  A scientist or engineer would probably 
say that it is a measurement or observation. 
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probability density function (although you often see "probability distribution" used indiscrimi-
nately).  The defining property of a probability distribution is that its sum (integral) over a range 
of possible measured values tells us the probability of a measurement yielding a value within the 
range. 

The most common probability distribution encoun-
tered in the lab is the Gaussian distribution.  The 
Gaussian distribution is also known as the normal 
distribution.  You may have heard it called the bell 
curve (because it is shaped somewhat like a fancy 
bell) when applied to grade distributions. 

The mathematical form of the Gaussian distribution 
is: 
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The Gaussian distribution is ubiquitous because it is 
the end result you get if you have a number of processes, each with their own probability distri-
bution, that "mix together" to yield a final result.  We will come back to probability distributions 
after we've discussed some statistics. 

Gaussian Distribution

STATISTICS 
Perhaps the single most important statistic is the mean or average.  Often we will use a "bar" 
over a variable (e.g., x ) or "angle brackets" (e.g., x ) to indicate that it is an average.  So, if we 
have N measurements xi (i.e., x1, x2, ..., xN), the average is given by: 
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1

1( ... ) /
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N i
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x x x x x N
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= = + + + = x∑  (2) 

In the lab, the average of a set of measurements is usually our best estimate of the "true" value*: 

 x x≈  (3) 

In general, a given measurement will differ from the "true" value by some amount.  That amount 
is called a deviation.  Denoting a deviation by d, we then get: 

 i id x x x xi= − ≈ −  (4) 

Clearly, the average deviation is zero (to see this, take the average of both sides). 

Another notable statistic is the variance, defined as the mean square deviation: 

 2 2 2 2
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N N

N i
i i

2
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The variance is useful because it gives us a measure of the spread or statistical uncertainty in the 
                                                 
* For these discussions, we will denote the "true" value as a variable without adornment (e.g., x). 
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measurements.  You may have noticed a slight problem with the expression for the variance: We 
don't know the "true" value x, we have only an estimate, x , from our measurements.  It turns out 
that using x to instead of x in equation (5) systematically underestimates the variance.  It can be 
shown that our best estimate of the "true" variance is given by sample variance: 
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=
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A related statistic is the standard deviation, which is simply the square root of the variance: 

 2

1

1var( ) ( )
N

x
i

ix x x
N

σ
=

= = −∑  (7) 

Note that the standard deviation has the same problem as does the variance in that we don't know 
x.  Again we find that using x to instead of x systematically underestimates the standard devia-
tion.  We define the sample standard deviation to be the square root of the sample variance: 
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The sample standard deviation is our best estimate of the "true" standard deviation.  [If, however, 
we have a situation where we can make all possible measurements, then we should use equation 
(7).  Equation (7) defines a statistic which, for clarity, is often called the population standard de-
viation.] 

To illustrate some of these points, consider the following:  Suppose we want to know the average 
height and associated standard deviation of the entering class.  We could measure every entering 
student (the entire population) and simply calculate the average.  We would then simply calcu-
late x and σ directly.  Tracking down all of the entering students, however, would be very tedi-
ous.  We could, instead, measure a representative* sample and calculate x and sx as estimates of 
x and σ. 

Modern spreadsheets such as MS Excel or Corel Quattro Pro also have built-in statistical 
functions. For example, AVERAGE (Excel) and AVG (Quattro) calculate the average of a range 
of cells; whereas STDEV (Excel) and STDS (Quattro) calculate the sample standard deviations. 
STDEVP (Excel) and STD (Quattro Pro) compute the population standard deviation. 

PROBABLE ERROR 
We now return to probability distributions.  Consider equation (1), the expression for a Gaussian 
distribution.  You should now have some idea as to why we wrote it in terms of d and σ.  Most of 
the time we find that our measurements (xi) deviate from the "true" value (x) and that these de-
viations (di) follow a Gaussian distribution with a standard deviation of σ.  So, what is the sig-
nificance of σ?  Remember that the integral of a probability distribution over some range gives 
the probability of getting a result within that range.  A straightforward calculation shows that the 

                                                 
* You have to be careful when choosing your sample.  Measuring the students who have basket-
ball scholarships would clearly bias your results.  In the lab we must also take pains to ensure 
that our samples are unbiased. 
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integral of PG from -σ to +σ is about 2/3.  This means that there is probability of 2/3 for any sin-
gle* measurement being within ±σ of the "true" value.  It is in this sense that we introduce the 
concept of probable error. 

Whenever we give a result, we also want to specify a probable error in such a way that we think 
that there is a 2/3 probability that the "true" value is within the range of values between our result 
minus the probable error to our result plus the probable error.  In other words, if x  is our best 
estimate of the "true" value x and xσ  is our best estimate of the probable error in x , then there is 
a 2/3 probability that: 

 x xx x xσ σ− ≤ ≤ +  

When we report results, we use the following notation: 

 xx σ±  

Thus, for example, the electron mass is given in data tables as 

 me = (9.109534 ± 0.000047) × 10-31 kg. 

By this we mean that the electron mass lies between 9.109487×10-31 kg and 9.109581×10-31 kg, 
with a probability of roughly 2/3. 

SIGNIFICANT FIGURES 
In informal usage the last significant digit implies something about the precision of the meas-
urement. For example, if we measure a rod to be 101.3 mm long but consider the result accurate 
to only ±0.5 mm, we round off and say, “The length is 101 mm.”  That is, we believe the length 
lies between 100 mm and 102 mm, and is closest to 101 mm. The implication, if no error is 
stated explicitly, is that the uncertainty is ½ of one digit, in the place following the last signifi-
cant digit. 

Zeros to the left of the first non-zero digit do not count in the tally of significant figures. If we 
say U = 0.001325 Volts, the zero to the left of the decimal point, and the two zeros between the 
decimal point and the digits 1325 merely locate the decimal point; they do not indicate precision. 
(The zero to the left of the decimal point is included because decimal points are small and hard to 
see. It is just a visual clue—and it is a good idea to provide this clue when you write down nu-
merical results in a laboratory!) The voltage U has thus been stated to four (4), not seven (7), 
significant figures. When we write it this way, we say we know its value to about ½ part in 1000 
(strictly, ½ part in 1325 or one part in 2650).  We could bring this out more clearly by writing 
either U = 1.325×10-3 V, or U = 1325×10-3 mV. 

PROPAGATION OF ERRORS 
More often than not, we want to use our measured quantities in further calculations.  The ques-
tion that then arises is: How do the errors "propagate"?  In other words: What is the probable er-
ror in the calculated quantity given the probable errors in the input quantities? 

                                                 
* We'll come back to the issue of the probable error in the mean. 
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Before we answer this question, we want to introduce two new terms: 

The relative error of a quantity Q is simply its probable error, σQ, divided by the absolute 
value of Q. 

When we say that quantities add in quadrature, we mean that first you square the indi-
vidual quantities, then you sum squared quantities, and then you take the square root of 
the sum of the squared quantities. 

We will simply give the results for propagating errors rather than attempt to derive the formulas 
as the derivations are a bit beyond the scope of this write-up. 

1. If the functional form of the derived quantity ( f ) is simply the product of a constant (C) 
times a quantity with known probable error (x and σx), then the probable error in the de-
rived quantity is the product of the absolute value of the constant and the probable error 
in the quantity: 

 ( ) f xf x Cx Cσ σ= → =  

2. If the functional form of the derived quantity ( f ) is simply the sum or difference of two 
quantities with known probable error (x and σx and y and σy), then the probable error in 
the derived quantity is the quadrature sum of the errors: 

 2 2( , ) or ( , ) f x yf x y x y f x y x y σ σ σ= + = − → = +  

3. If the functional form of the derived quantity ( f ) is simply the product or ratio of two 
quantities with known probable error (x and σx and y and σy), then the relative probable 
error in the derived quantity is the quadrature sum of the errors: 

 2 2( , ) or ( , ) / | | ( / ) ( / )f x yf x y x y f x y x y f x yσ σ σ= × = → = +  

4. If the functional form of the derived quantity ( f ) is a quantity with known probable error 
(x and σx) raised to some constant power (a), then the relative probable error in the de-
rived quantity is the product of the absolute value of the constant and the relative prob-
able error in the quantity: 

 ( ) / | | / | |a
f xf x x f a xσ σ= → =  

5. If the functional form of the derived quantity ( f ) is the log of a quantity with known 
probable error (x and σx), then the probable error in the derived quantity is the relative 
probable error in the quantity: 

 ( ) ln( ) /f xf x x σ σ= → = x  

6. If the functional form of the derived quantity ( f ) is the anti-log of a quantity with known 
probable error (x and σx), then the relative probable error in the derived quantity is the 
probable error in the quantity: 

 ( ) /x
f xf x e fσ σ= → =  

And, finally, we give the general form (you are not expected to know or use this equation; it is 
only given for "completeness"): 
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f ff x y
x y

σ σ σ
 ∂ ∂ → = + +  ∂ ∂   

2
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PROBABLE ERROR IN THE MEAN 
Suppose that we make two independent measurements of some quantity: x1 and x2.  Our best es-

timate of x, the "true" value, is given by the mean, 1 2
1 (
2

)x x x= + , and our best estimate of the 

probable error in x1 and in x2 is given by the sample standard deviation, 

( ) ( )
1 2

2
1 2

1
2 1x x xs x x xσ σ   = = = − + −  − 

2x 
 .  Note that sx is not our best estimate of xσ , the 

probable error in x .  We must use the propagation of errors formulas to get xσ .  Now, x  is not 
exactly in one of the simple forms where we have a propagation of errors formula.  However, we 

can see that it is of the form of a constant, 1
2



 

 , times something else, 1 2( )x x+ , and so: 

 
1 2

1
2x xσ σ x+=  

The "something else" is a simple sum of two quantities with known probable errors (sx) and we 
do have a formula for that: 

 
1 2 1

2 2 2 2
2 2x x x x x x xs s sσ σ σ+ = + = + =  

So we get the desired result for two measurements: 

 1
2x xsσ =  

By taking a second measurement, we have reduced our probable error by a factor of 1 .  You 
can probably see now how you would go about showing that adding third, x

2
3, changes this factor 

to 1 .  The general result (for N measurements) for the probable error in the mean is: 3

 1
x s

N
σ = x  (10) 

EXAMPLE 
We can measure the gravitational acceleration g near the Earth’s surface by dropping a mass in a 
vertical tube from which the air has been removed.  Since the distance of fall (D), time of fall (t) 

and g are related by 21
2

D g= t , we have 22g Dt−= .  So we see that we can determine g by sim-

ply measuring the time it takes for an object to fall a known distance.  We hook up some photo-
gates* to a timer so that we measure the time from when we release a ball to when it gets to the 
photo-gate.  We very carefully use a ruler to set the distance (D) that the ball is to fall to 1.800 m.  
We estimate that we can read our ruler to within 1 mm.  We drop the ball ten times and get the 
following times (ti): 0.6053, 0.6052, 0.6051, 0.6050, 0.6052, 0.6054, 0.6053, 0.6047, 0.6048, and 
0.6055 seconds.  The average of these times ( )t  is 0.60515 seconds.  Our best estimate of g is 

then 2
exp 2 / 9.8305g D t= = m/s2.  This is larger than the "known" local value of 9.809 m/s2 by 

0.0215 m/s2 (0.2%).  We do expect experimental uncertainties to cause our value to be different, 
                                                 
* A device with a light source and detector that changes an output when something comes be-
tween the source and detector. 
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but the question is: Is our result consistent with the "known" value, within experimental errors?  
To check this we must estimate our probable error. 

Our expression for g is, once again*, not precisely in one of the simple propagation of errors 
forms and so we must look at it piecemeal.  This time we will not work it all out algebraically, 
but will instead substitute numbers as soon as we can so that we can take a look at their effects 
on the final probable error. 

What are our experimental probable errors?  We've estimated that our probable error in the dis-
tance (σD) is 1 mm (hence a relative error, D Dσ , of 0.00006 or 0.06%).  From our time data we 
calculate the sample standard deviation (st) to be 0.00025 seconds.  Recall that this is not the 
probable error in the mean (our best estimate of the "true" time for the ball to fall), it is the prob-
able error in any single one of the time measurements (ti).  The probable error in the mean is st 
divided by the square root of the number of samples (10): / 10 0.00008t tsσ = = seconds (for a 
relative error, /t tσ , of 0.00008 or 0.008%).  We see that the relative error in the distance 
measurement is quite a bit larger than the relative error in the time measurement and so we might 
assume that we could ignore the time error (essentially treating the time as a constant).  How-
ever, the time enters into g as a square and we expect that that makes a bigger contribution than 
otherwise.  So we don't (yet) make any such simplifying assumptions.  We see that our estimate 
of g (which we denote by gexp) is of the form of a constant (2) times something else ( 2/D t ) and 
so: 

 2
exp /2g D tσ σ=  

2/D t  is of the form of a simple product of two quantities (D and 2t ) and so: 

 ( ) ( )2 2

222 2
/

/ / / /DD t tD t D tσ σ σ= +  

Now we are getting somewhere as we have D Dσ (0.06%).  We need only find 2
2/t tσ .  2t  is of 

the form of a quantity raised to a constant power and so: 
 2

2/ 2 /tt t tσ σ=  
Now we can see the effect of squaring t : Its contribution to the probable error is doubled.  Con-
sider the two terms under the square root: 
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Now we can see that, even though the time enters as a square, we would have been justified in 
ignoring its contribution to the probable error in g.  Plugging the numbers back in, we finally get 

exp
0.0061gσ = m/s2. 

We see that our result is 3.5 standard deviations larger than the "known" value.  While not totally 
out of the question, it is still very unlikely and so we need to look for the source of the problem.  
In this case we find that the ruler is one of those with a worn end.  We carefully measure the off-
set and find it to be 5.0 mm too short.  Subtracting this changes D to 1.795 m and gexp to 

                                                 
* Refer to the discussion of the probable error in the mean. 
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9.803 m/s2, well within our experimental error*. 

                                                 
* The implied error in our measurement of the offset (0.1 mm) is much smaller than the error in 
the original D and so we can afford to ignore its contribution to the probable error in gexp. 
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SUMMARY OF STATISTICAL FORMULAS 

Sample mean: 
1

1 N

i
i

x x
N =

= ∑  

(best estimate of the “true” value of x, 
using N measurements) 

Sample standard deviation: 2

1

1 ( )
1

N

x i
i

s x
N =

 = − − 
∑ x  

(best estimate of error in any single 
measurement, xi) 

Standard error of the mean: 1
x xs

N
σ =  

(best estimate of error in determining 
the population mean, x ) 

SUMMARY OF ERROR PROPAGATION FORMULAS 

 Functional form Error propagation formula 

1. ( )f x C= x  f xCσ σ=  

2. ( , )f x y x y= ±  2 2
f x yσ σ σ= +  

3. ( , ) orf x y x y x y= ×  2 2/ | | ( / ) ( / )f x yf x yσ σ σ= +  

4. ( ) af x x=  / | | / |f x |f a xσ σ=  

5. ( ) ln( )f x x=  /f x xσ σ=  

6. ( ) xf x e=  /f xfσ σ=  

and the general form: 

7.  ( , ,...)f x y
22

2 2 ...f x
f f
x y

σ σ σ
 ∂ ∂  2

y= + +  ∂ ∂   
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