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Analyzing Waves on a String 
Michael Fowler 5/30/08 

From Newton’s Laws to the Wave Equation 
Everything there is to know about waves on a uniform string can be found by applying Newton’s 
Second Law, , to one tiny bit of the string.  Well, at least this is true of the small 
amplitude waves we shall be studying—we’ll be assuming the deviation of the string from its 
rest position is small compared with the wavelength of the waves being studied.  This makes the 
math simpler, and is an excellent approximation for musical instruments, etc.   Having said that, 
we’ll draw diagrams, like the one below, with rather large amplitude waves, to show more 
clearly what’s going on. 
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Dynamics of a short segment of string: neglecting gravity, the 
only forces are the tension forces T acting on the ends. 

 
 
Let’s write down  for the small length of string between x and x + Δx in the diagram 
above.   

F ma=

 
Taking the string to have mass density μ  kg/m, we have .m xμ= Δ   
 
The forces on the bit of string (neglecting the tiny force of gravity, air resistance, etc.) are the 
tensions T at the two ends.  The tension will be uniform in magnitude along the string, but the 
string curves if it’s waving, so the two T  vectors at opposite ends of the bit of string do not quite 
cancel, this is the net force  we’re looking for.  F
 
Bearing in mind that we’re only interested here in small amplitude waves, we can see from the 
diagram (squashing it mentally in the y-direction) that both  T  vectors will be close to 
horizontal, and, since they’re pointing in opposite directions, their sum—the net force —will 
be very close to vertical: 

F
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The two almost-parallel T (string tension) vectors add to give a 
resultant almost-vertical force on the string segment. 

 
 
The vertical component of the tension T  at the x + Δx end of the bit of string is sinT θ , where θ  
is the angle of slope of the string at that end. This slope is of course just , or, 
more precisely, 

( ) /dy x x dx+ Δ
/ tandy dx θ= .   

θ  sinT θ  

 
 

However, if the wave amplitude is small, as we’re assuming, then θ  is small, and we can take 
tan sinθ θ θ= = , and therefore take the vertical component of the tension force on the string to 
be .  So the total vertical force from the tensions at the two ends becomes ( ) /T Tdy x x dθ = + Δ x
 

( ) ( ) ( )2

2

dy x x dy x d y x
F T T x

dx dx dx
+ Δ⎛ ⎞

= − ≅⎜ ⎟
⎝ ⎠

Δ  

 
the equality becoming exact in the limit 0xΔ → . 
 
At this point, it is necessary to make clear that y is a function of t as well as of x: ( ),y y x t= .  In 
this case, the standard convention for denoting differentiation with respect to one variable while 
the other is held constant (which is the case here—we’re looking at the sum of forces at one 
instant of time) is to replace /  with /d dx x∂ ∂ .   
 
So we should write:  

2

2

yF T x
x
∂

= Δ
∂

. 

 
The final piece of the puzzle is the acceleration of the bit of string: in our small amplitude 
approximation, it’s only moving up and down, that is, in the y-direction—so the acceleration is 

just 2 / 2y t∂ ∂ , and canceling Δx between the mass m xμ= Δ  and  
2

2

yF T x
x
∂

= Δ
∂

,  F ma=  gives: 

 
2 2

2 2

y yT
x t

μ∂ ∂
=

∂ ∂
. 

This is called the wave equation.   
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It’s worth looking at this equation to see why it is equivalent to F ma= .  Picture the graph 
( ),y y x t= , showing the position of the string at the instant t.  At the point x, the differential 

is the slope of the string.  The second differential,  /y x∂ ∂ 2 / 2y x∂ ∂ , is the rate of change of the 
slope—in other words, how much the string is curved at x.  And, it’s this curvature that ensures 
the T ’s at the two ends of a bit of string are pointing along slightly different directions, and 
therefore don’t cancel. This force, then, gives the mass×acceleration on the right.  

Solving the Wave Equation 
Now that we’ve derived a wave equation from analyzing the motion of a tiny piece of string, we 
must check to see that it is consistent with our previous assertions about waves, which were 
based on experiment and observation.  For example, we stated that a wave traveling down a rope 
kept its shape, so we could write ( ) ( ),y x t f x vt= − .  Does a general function ( )f x vt−  
necessarily satisfy the wave equation?  This f is a function of a single variable, let’s call it 

.  On putting it into the wave equation, we must use the chain rule for differentiation: u x vt= −
 

,f f u f f f u fv
x u x u t u t u
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
and the equation becomes 
 

2 2
2

2 2

f fT v
u u

μ∂ ∂
=

∂ ∂
 

 
so the function ( )f x vt− will always satisfy the wave equation provided 
 

2 Tv
μ

= . 

 
All traveling waves move at the same speed—and the speed is determined by the tension and the 
mass per unit length.  We could have figured out the equation for v2 dimensionally, but there 
would have been an overall arbitrary constant.  We need the wave equation to prove that constant 
is 1.  
 
Incorporating the above result, the equation is often written: 
 

2 2

2 2

1
2

y y
x v t
∂ ∂

=
∂ ∂

 

 
Of course, waves can travel both ways on a string: an arbitrary function is an equally 
good solution. 

(g x vt+ )
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The Principle of Superposition 
The wave equation has a very important property: if we have two solutions to the equation, then 
the sum of the two is also a solution to the equation.  It’s easy to check this: 
 

( ) ( )2 22 2 2 2

2 2 2 2 2 2 2 2 2

1 1 1f g ff g f g g
x x x v t v t v t

∂ + ∂ +∂ ∂ ∂ ∂
= + = + =

∂ ∂ ∂ ∂ ∂ ∂
. 

 
Any differential equation for which this property holds is called a linear differential equation: 
note that  is also a solution to the equation if a, b are constants. So you can add 
together—superpose—multiples of any two solutions of the wave equation to find a new 
function satisfying the equation. 

( ) (,af x t bg x t+ ),

Harmonic Traveling Waves 
Imagine that one end of a long taut string is attached to a simple harmonic oscillator, such as a 
tuning fork—this will send a harmonic wave down the string,  
 

( ) ( )sinf x vt A k x vt− = − . 
 
The standard notation is 
 

( ) ( )sinf x vt A kx tω− = −  
where of course 
 

vkω = . 
 
More notation: the wavelength of this traveling wave is λ , and from the form ( )sinA kx tω− , at 
say , 0t =
 

2kλ π= . 
 
At a fixed x, the string goes up and down with frequency given by sin tω , so the frequency f in 
cycles per second (Hz) is 

Hz.
2

f ω
π

=  
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A harmonic traveling wave passes the origin. 

λ 

y 

x 

 
Now imagine you’re standing at the origin watching the wave go by.  You see the string at the 
origin do a complete up-and-down cycle f times per second.  Each time it does this, a whole 
wavelength of the wave travels by.  Suppose that at t = 0 the wave, coming in from the left, has 
just reached you.  
 
Then at t = 1 second, the front of the wave will have traveled f wavelengths past you—so the 
speed at which the wave is traveling 
 

meters per second.v fλ=  

Energy and Power in a Traveling Harmonic Wave 
If we jiggle one end of a string and send a wave down its length, we are obviously supplying 
energy to the string—for one thing, as the wave moves down, bits of the string begin moving, so 
there is kinetic energy.  And, there’s also potential energy—remember the wave won’t go down 
at all unless there is tension in the string, and when the string is waving it’s obviously longer 
than when it’s motionless along the x-axis.  This stretching of the string takes work against the 
tension T equal to force times distance, in this case equal to the force T multiplied by the distance 
the string has been stretched.  (We assume that this increase in length is not sufficient to cause 
significant increase in T.  This is usually ok.)  
 
For the important case of a harmonic wave traveling along a string, we can work out the energy 
per unit length exactly.  We take  
  

( ) ( ), sin .y x t A kx tω= −  
 

If the string has mass μ  per unit length, a small piece of string of length xΔ  will have mass 

xμΔ , and moves (vertically) at speed /y t∂ ∂ , so has kinetic energy ( ) ( )21/ 2 /x y tμΔ ∂ ∂ , from 
which the kinetic energy of a length of string is  
 

21. . .
2

yK E dx
t

μ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫  

 
For the harmonic wave ( ) ( ), siny x t A kx t ,ω= −   
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2 2 21. . cos ( )
2

K E A kx t dxμ ω ω= −∫  

 
and since the average value 2 1

2cos ( )kx tω− = , for a continuous harmonic wave the average K.E. 
per unit length  
 

2 21
4. . / meter .K E Aμω=  

 
To find the average potential energy in a meter of string as the wave moves through, we need to 
know how much the string is stretched by the wave, and multiply that length increase by the 
tension T.  
 
Let’s start with a small length xΔ  of string, and suppose that the change in y from one end to the 
other is : yΔ
  

Δy 
Δx

How much is the string stretched when it’s waving? 
 

 
The string (red) is the hypotenuse of this right-angled triangle, so the amount of stretching lΔ of 
this length xΔ is how much longer the hypotenuse is than the base xΔ . 
 
So 

( ) ( ) ( )2 2 21 /l x y x x y xΔ = Δ + Δ −Δ = Δ + Δ Δ −Δ .x  
 
Remembering that we’re only considering small amplitude waves, /y xΔ Δ  is going to be small, 
so we can expand the square root using the result 
 

1
21 1   for small x x x+ ≅ +  

to find 
( )21

2 / .l y x xΔ ≅ Δ Δ Δ  
 
To find the total stretching of a unit length of string, we add all these small stretches, taking the 
limit of small 'sxΔ to find 
 
 

( ) ( )2 2 2 21 1
2 2. ./meter / cos .P E T y x dx TA k kx t dxω= ∂ ∂ = −∫ ∫  
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Now, just as for the kinetic energy discussed above, since 2 1
2cos ( )kx tω− = , the average 

potential energy per meter of string is 
 
 

2 2 2 2 21 1
4 4. . / meter ,  since  and / .P E Tk A A vk v Tμω ω= = = = μ  

 
That is to say, the average potential energy is the same as the average kinetic energy.  This is a 
very general result: it is true for all harmonic oscillators (excepting the case of heavy damping).  
 
Finally, the power in a wave traveling down a string is the rate at which it delivers energy at its 
destination.  Adding together the kinetic and potential energy contributions above,  
 

2 21
2total energy / meter .Aμω=  

 
Now, if the wave is traveling at v meters per second, and being totally absorbed at its destination 
(the end of the string) the energy delivered to that end in one second is all the energy in the last v 
meters of the string.  By definition, this is the power: the energy delivered in joules per second, 
That is, 

2 21
2power .v Aμω=  

Standing Waves from Traveling Waves 
An amusing application of the principle of superposition is adding together harmonic traveling 
waves moving in opposite directions to get a standing wave: 
 

( ) ( )sin sin 2 sin cosA kx t A kx t A kx tω ω ω− + + = . 
 
You can easily check that 2 sin cosA kx tω  is a solution to the wave equation (provided vkω = , 
of course) and it is always zero at points x satisfying kx nπ= , so for a string of length L, fixed at 
the two ends, the appropriate k are given by kL nπ= . 
 
The longest wavelength standing wave for a string of length L fixed at both ends has wavelength  

2Lλ = , and is termed the fundamental. 
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L 

Fundamental mode of vibration of a string fixed at both ends. 

 
The x-dependence of this wave, sin kx,  is clearly ( )sin /x Lπ , so / .k Lπ=  
   
The radial frequency of the wave is given by vkω = , so / ,v Lω π=  and the frequency in cycles 
per second, or Hz, is 
 

/ 2 / 2   Hz.f v Lω π= =   
 
(This is the same as the frequency /f v λ=  of a traveling wave having the same wavelength.) 
 
Here’s a realization of the superposition of two traveling waves to form a standing wave using a 
spreadsheet: 
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Here the red wave is (sin )A kx tω−  and moves to the right, the green (sin )A kx tω+ moves to 
the left, the black is the sum of the two and its oscillations stay in place.   
 
But this represents just one instant!  To see the full development in time—which you need to do 
to get real insight into what’s going on—download the spreadsheet from 
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/WaveSum.xls ,then click and hold at 
the end of the slider bar to animate. 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/WaveSum.xls
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Exercise:  How do you think the black wave will move if the red and green have different 
amplitudes?  Predict it: then try it on the spreadsheet.  You might be surprised! (Try different 
ratios of the wave amplitudes: say, 1.1, 1.5, 2, 5.) 
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