previous index next

The Number e and the Exponential Function

Michael Fowler, UVa
Disclaimer: these notes are not mathematically rigorous. Instead, they present quick, and, I hope, plausible, derivations of the properties of e, e^{x} and the natural logarithm.

The Limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
Consider the following series: $(1+1),\left(1+\frac{1}{2}\right)^{2},\left(1+\frac{1}{3}\right)^{3}, \ldots,\left(1+\frac{1}{n}\right)^{n}, \ldots$ where n runs through the positive integers. What happens as n gets very large?

It's easy to find out if you use a scientific calculator having the function $x^{\wedge} y$. The first three terms are 2, 2.25, 2.37. You can use your calculator to confirm that for $n=10,100,1000$, $10,000,100,000,1,000,000$ the values of $\left(1+\frac{1}{n}\right)^{n}$ are (rounding off) $2.59,2.70,2.717,2.718$, 2.71827, 2.718280. These calculations strongly suggest that as n goes up to infinity, $\left(1+\frac{1}{n}\right)^{n}$ goes to a definite limit. It can be proved mathematically that $\left(1+\frac{1}{n}\right)^{n}$ does go to a limit, and this limiting value is called e. The value of e is 2.7182818283... .

To try to get a bit more insight into $\left(1+\frac{1}{n}\right)^{n}$ for large n, let us expand it using the binomial theorem. Recall that the binomial theorem gives all the terms in $(1+x)^{n}$, as follows:

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots+x^{n}
$$

To use this result to find $\left(1+\frac{1}{n}\right)^{n}$, we obviously need to put $x=1 / n$, giving:

$$
\left(1+\frac{1}{n}\right)^{n}=1+n \cdot \frac{1}{n}+\frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{1}{n}\right)^{3}+\ldots .
$$

We are particularly interested in what happens to this series when n gets very large, because that's when we are approaching e. In that limit, $n(n-1) / n^{2}$ tends to 1 , and so does $n(n-1)(n-2) / n^{3}$. So, for large enough n, we can ignore the n-dependence of these early terms in the series altogether!

When we do that, the series becomes just:

$$
1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots
$$

And, the larger we take n, the more accurately the terms in the binomial series can be simplified in this way, so as n goes to infinity this simple series represents the limiting value of $\left(1+\frac{1}{n}\right)^{n}$.
Therefore, e must be just the sum of this infinite series.
(Notice that we can see immediately from this series that e is less than 3 , because $1 / 3$! is less than $1 / 2^{2}$, and $1 / 4$! is less than $1 / 2^{3}$, and so on, so the whole series adds up to less than $1+1+1 / 2$ $+1 / 2^{2}+1 / 2^{3}+1 / 2^{4}+\ldots=3$.)

The Exponential Function e^{x}

Taking our definition of e as the infinite n limit of $\left(1+\frac{1}{n}\right)^{n}$, it is clear that e^{x} is the infinite n limit of $\left(1+\frac{1}{n}\right)^{n x}$. Let us write this another way: put $y=n x$, so $1 / n=x / y$. Therefore, e^{x} is the infinite y limit of $\left(1+\frac{x}{y}\right)^{y}$. The strategy at this point is to expand this using the binomial theorem, as above, and get a power series for e^{x}.
(Footnote: there is one tricky technical point. The binomial expansion is only simple if the exponent is a whole number, and for general values of $x, y=n x$ won't be. But remember we are only interested in the limit of very large n, so if x is a rational number a / b, where a and b are integers, for n any multiple of b, y will be an integer, and pretty clearly the function $\left(1+\frac{x}{y}\right)^{y}$ is continuous in y, so we don't need to worry. If x is an irrational number, we can approximate it arbitrarily well by a sequence of rational numbers to get the same result.)

So, we need to do the binomial expansion of $\left(1+\frac{x}{y}\right)^{y}$ where y is an integer-to make this clear, let us write $y=m$.

$$
\left(1+\frac{x}{m}\right)^{m}=1+m \cdot \frac{x}{m}+\frac{m(m-1)}{2!}\left(\frac{x}{m}\right)^{2}+\frac{m(m-1)(m-2)}{3!}\left(\frac{x}{m}\right)^{3}+\ldots
$$

Notice that this has exactly the same form as the binomial expansion of $\left(1+\frac{1}{n}\right)^{n}$ in the paragraph above, except that now a power of x appears in each term. Again, we are only interested in the limiting value as m goes to infinity, and in this limit $m(m-1) / m^{2}$ goes to 1 , as does $m(m-1)(m-$ $2) / m^{3}$. Thus, as we take m to infinity, the m dependence of each term disappears, leaving

$$
e^{x}=\lim _{m \rightarrow \infty}\left(1+\frac{x}{m}\right)^{m}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Differentiating e^{x}

$$
\frac{d}{d x} e^{x}=\frac{d}{d x}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)=1+x+\frac{x^{2}}{2!}+\ldots
$$

so when we differentiate e^{x}, we just get e^{x} back. This means e^{x} is the solution to the equation $\frac{d y}{d x}=y$, and also the equation $\frac{d^{2} y}{d x^{2}}=y$, etc. More generally, replacing x by $a x$ in the series above gives

$$
e^{a x}=1+a x+\frac{a^{2} x^{2}}{2!}+\frac{a^{3} x^{3}}{3!}+\ldots
$$

and now differentiating the series term by term we see $\frac{d}{d x} e^{a x}=a e^{a x}, \frac{d^{2}}{d x^{2}} e^{a x}=a^{2} e^{a x}$, etc., so the function $e^{a x}$ is the solution to differential equations of the form $\frac{d y}{d x}=a y$, or of the form $\frac{d^{2} y}{d x^{2}}=a^{2} y$ and so on.

Instead of differentiating term by term, we could have written

$$
\frac{d}{d x} e^{a x}=\lim _{\Delta x \rightarrow 0} \frac{e^{a(x+\Delta x)}-e^{a x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{e^{a x}\left(e^{a \Delta x}-1\right)}{\Delta x}=a e^{a x}
$$

where we have used $\left(e^{a \Delta x}-1\right) \rightarrow a \Delta x$ in the limit $\Delta x \rightarrow 0$.

The Natural Logarithm

We define the natural logarithm function $\ln x$ as the inverse of the exponential function, by which we mean

$$
y=\ln x \text {, if } x=e^{y}
$$

Notice that we've switched x and y from the paragraph above! Differentiating the exponential function $x=e^{y}$ in this switched notation,

$$
\frac{d x}{d y}=e^{y}=x, \text { so } \frac{d y}{d x}=\frac{1}{x}
$$

That is to say,

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

Therefore, $\ln x$ can be written as an integral,

$$
\ln x=\int_{1}^{x} \frac{d z}{z}
$$

You can check that this satisfies the differential equation by taking the upper limit of the integral to be $x+\Delta x$, then x, subtracting the second from the first, dividing by Δx, and taking Δx very small. But why have I taken the lower limit of the integral to be 1 ? In solving the differential equation in this way, I could have set the lower limit to be any constant and it would still be a solution-but it would not be the inverse function to e^{y} unless I take the lower limit 1, since that gives for the value $x=1$ that $y=\ln x=0$. We need this to be true to be consistent with $x=e^{y}$, since $e^{0}=1$.

Exercise: show from the integral form of $\ln x$, that for small $x, \ln (1+x)$ is approximately equal to x. Check with your calculator to see how accurate this is for $x=0.1,0.01$.
previous index next

