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Hydrostatics: from Archimedes to Jefferson 

Beginning with Archimedes jumping out of a bath and running down the street shouting 
“Eureka” because he’d realized how to prove an expensive crown wasn’t all it seemed, 
going on to his Principle of buoyancy and the concept of pressure, then to the much later 
realization that we live in an ocean of air with its own pressure, finally to Jefferson 
measuring the altitude of Monticello with a barometer bought in Philadelphia in 1776. 

High Tech Crime Detection, Version 1.0 

We begin this lecture in Syracuse, Sicily, 2200 years ago, with Archimedes and his friend 
king Heiro. The following is quoted from Vitruvius, a Roman engineer and architect 
writing just before the time of Christ:  

Heiro, after gaining the royal power in Syracuse, resolved, as a 
consequence of his successful exploits, to place in a certain temple a 
golden crown which he had vowed to the immortal gods. He contracted 
for its making at a fixed price and weighed out a precise amount of gold to 
the contractor. At the appointed time the latter delivered to the king’s 
satisfaction an exquisitely finished piece of handiwork, and it appeared 
that in weight the crown corresponded precisely to what the gold had 
weighed.  

But afterwards a charge was made that gold had been abstracted and an 
equivalent weight of silver had been added in the manufacture of the 
crown. Heiro, thinking it an outrage that he had been tricked, and yet not 
knowing how to detect the theft, requested Archimedes to consider the 
matter. The latter, while the case was still on his mind, happened to go to 
the bath, and on getting into a tub observed that the more his body sank 
into it the more water ran out over the tub. As this pointed out the way to 
explain the case in question, without a moments delay and transported 
with joy, he jumped out of the tub and rushed home naked, crying in a 
loud voice that he had found what he was seeking; for as he ran he 
shouted repeatedly in Greek, "Eureka, Eureka."  

Taking this as the beginning of his discovery, it is said that he made two 
masses of the same weight as the crown, one of gold and the other of 
silver. After making them, he filled a large vessel with water to the very 
brim and dropped the mass of silver into it. As much water ran out as was 
equal in bulk to that of the silver sunk in the vessel. Then, taking out the 
mass, he poured back the lost quantity of water, using a pint measure, 
until it was level with the brim as it had been before. Thus he found the 
weight of silver corresponding to a definite quantity of water.    
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After this experiment, he likewise dropped the mass of gold into the full 
vessel and, on taking it out and measuring as before, found that not so 
much water was lost, but a smaller quantity: namely, as much less as a 
mass of gold lacks in bulk compared to a mass of silver of the same 
weight. Finally, filling the vessel again and dropping the crown itself into 
the same quantity of water, he found that more water ran over for the 
crown than for the mass of gold of the same weight. Hence, reasoning 
from the fact that more water was lost in the case of the crown than in that 
of the mass, he detected the mixing of silver with the gold and made the 
theft of the contractor perfectly clear.  

What is going on here is simply a measurement of the density—the mass per unit 
volume—of silver, gold and the crown. To measure the masses some kind of scale is 
used, note that at the beginning a precise amount of gold is weighed out to the contractor. 
Of course, if you had a nice rectangular brick of gold, and knew its weight, you wouldn’t 
need to mess with water to determine its density, you could just figure out its volume by 
multiplying together length, breadth and height in meters, and divide the mass, or weight, 
in kilograms, by the volume to find the density in kilograms per cubic meter, or whatever 
units are convenient. (Actually, the original metric density measure was in grams per 
cubic centimeter, with the nice feature that the density of water was exactly 1, because 
that’s how the gram was defined (at 4 degrees Celsius and atmospheric pressure, to be 
absolutely precise). In these units, silver has a density of 10.5, and gold of 19.3.  We shall 
be using the standard MKS units, so water has a density 1000kg/m3, silver 10,500kg/m3, 
etc.   

The problem with just trying to find the density by figuring out the volume of the crown 
is that it is a very complicated shape, and although one could no doubt find its volume by 
measuring each tiny piece and calculating a lot of small volumes which are then added 
together, it would take a long time and be hard to be sure of the accuracy, whereas 
lowering the crown into a filled bucket of water and measuring how much water 
overflows is obviously a pretty simple procedure. (You do have to allow for the volume 
of the string!). Anyway, the bottom line is that if the crown displaces more water than a 
block of gold of the same weight, the crown isn’t pure gold. 

Actually, there is one slightly surprising aspect of the story as recounted above by 
Vitruvius. Note that they had a weighing scale available, and a bucket suitable for 
immersing the crown. Given these, there was really no need to measure the amount of 
water slopping over. All that was necessary was to weigh the crown under water, then dry 
it off and weigh it out of the water. By Archimedes’ Principle, the difference in these 
weights is equal to the weight of water displaced. This is definitely a less messy 
procedure--there is no need to fill the bucket to the brim in the first place, all that is 
necessary is to be sure that the crown is fully immersed, and not resting on the bottom or 
caught on the side of the bucket, during the weighing.   
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Of course, maybe Archimedes had not figured out his Principle when the king began to 
worry about the crown, perhaps the above experiment led him to it. There seems to be 
some confusion on this point of history.   

We now turn to a discussion and derivation of Archimedes’ Principle. To begin with, it is 
essential to understand clearly the concept of pressure in a fluid.  

Pressure 

Perhaps the simplest way to start thinking about pressure is to consider pumping up a 
bicycle tire with a hand pump. Pushing in the handle compresses the air inside the 
cylinder of the pump, raising its pressure—it gets more difficult to compress further. At a 
certain point, the air is compressed enough that it can get through a valve into the tire. 
Further pushing on the handle transfers the air to the tire, after which the handle is pulled 
back and the pump refills with outside air, since the valve on the tire is designed not to 
allow air to flow out of the tire. The outside air gets into the pump because there is, 
effectively, another valve—pushing the handle down pushes a washer down the inside of 
the cylinder to push the air out. The flexible rubber washer has a metal disk behind it so 
that it cannot bend far enough backwards to let air past it. On the return stroke, the 
washer has no rigidity, and the disk is on the wrong side for purposes of keeping it stiff, 
so it bends to allow air to get around it into the cylinder. As you continue to inflate the 
tire, it gets harder, and it’s not just that you’re wearing out. As the pressure in the tire 
increases, you have to compress the air in the pump more and more before it reaches the 
pressure where the valve on the tire opens and lets it in. This is hardly surprising, because 
the pressure inside the tire is building up, and the valve is not going to open until the 
pressure from the pump has built up beyond that in the tire, so that the new air can push 
its way into the tire.  

If you look at the bicycle tire, you will probably see written on it somewhere the 
appropriate pressure for riding, in pounds per square inch. A gas, for instance air, under 
pressure pushes outwards on all the walls containing it with a steady force, equal areas of 
the walls feeling an equal force which is proportional to the area, hence the units, pounds 
per square inch. A typical ten-speed tire might be eighty pounds per square inch. (In 
metric units, one pound per square inch is about 6900 Newtons per square meter, so a 
typical ten-speed tire has pressure around 5.5 x 105 Newtons per square meter.  A useful 
way to remember this equivalence is that the pressure of the atmosphere, which is about 
15 pounds per square inch, is about 105 Newtons per square meter.) This means, if your 
pump has a cylinder with an internal cross-sectional area of one square inch, you must 
push it with a force of better than eighty pounds to get air into it when it’s fully inflated. 
Of course, a pump with a narrower cylinder (which most have!) will need a 
proportionately smaller force, but then you will get less air delivered per stroke.   

You can measure the air pressure in a tire using a pressure gauge. The basic idea of such 
a gauge is that on holding it against the tire valve, the valve opens and lets out air into a 
small cylinder with a moveable end, this end feels a force equal to the pressure in the tire 
(which is also the pressure in this cylinder) multiplied by its cross sectional area. The 
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moveable end can push against a spring, with some device to lock it when it reaches 
maximum compression of the spring, to make it easy to read.   

We can construct a more primitive, but easy to understand, pressure measuring device by 
putting water in a U-shaped tube. This is called a manometer. Suppose we leave one end 
of the tube open to the air but connect a partially inflated balloon to the other end. We 
observe that the pressure from the balloon pushes the water down on its side, and hence 
the water rises on the open side. Suppose the water goes down 0.1m on the balloon side, 
so it goes up 0.1m on the other side. What is the pressure in the balloon? It is clearly 
enough to support the weight of a column of water 0.2m high. To find out what this 
pressure is, we need to know how heavy water is. A cubic meter of water weighs 1000kg. 
Imagine this cubic meter in a cubic bucket, with a square bottom, one meter by one 
meter. That means the base has an area of one square meter, and this area is bearing the 
weight of the water, 1000kg, so the pressure at the base is approximately 10,000 Newtons 
per square meter. Now, our manometer, with a difference in water column heights of 
0.2m, must be indicating a pressure of 2,000 Newtons per square meter. Clearly, this 
manometer is not going to be a handy device for measuring pressure in a ten-speed tire!   

As you inflate a balloon, the elastic stretches more and more tightly, and it is this tension 
that balances the excess pressure of the air inside the balloon. You can feel the 
corresponding tightness in your own body by breathing deeply, and thus increasing the 
pressure in your lungs. Another way to feel increased pressure is to dive into deep water. 
The pressure under water increases with depth. We can easily demonstrate this with a 
rubber sheet stretched over a funnel on the end of a flexible rubber hose connected to the 
manometer. As we immerse the funnel in water, and push it in deeper, we see the 
pressure in it is rising, as measured by the manometer. In fact, we would expect to find 
that if we put it under six inches of water, the extra pressure measured will be given by an 
extra six inches height difference in the manometer arms. That would be true if we had a 
more accurate measuring instrument, but with our rather primitive arrangement the 
rubber sheet tension itself affects the reading slightly: as the rubber is pushed into the 
funnel, its own elastic contribution to the pressure inside varies. Fortunately, this turns 
out to be a rather small effect for the pressures we are looking at with the balloons we are 
using, so we ignore it.   

The main point to notice is that the pressure increases linearly with depth, just as you 
might expect, because it’s just the weight of water above you, weighing down on you, 
that’s causing the pressure. But it is crucial to realize that pressure in a fluid, unlike the 
weight of a solid, presses in all directions. Consider again the "cubic meter" bucket filled 
with water we discussed previously. The pressure on the bottom was about one and a half 
pounds per square inch. If the water freezes to a block of ice, the weight of the ice on the 
bottom will exert the same pressure. However, consider now a small area on one of the 
side walls close to the bottom. The water presses on that too. If you’re not sure about that, 
think what would happen if a small hole were to be bored into the side wall near the 
bottom. But if the water is a frozen block of ice, you could remove all the side walls, and 
the ice would stay in place. So fluids really are different in the way they push against 
containers, or against objects immersed in them.   
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A more vivid impression of the increase of pressure with depth, and the way it presses 
something in from all sides, is given by watching submarine movies, like the German das 
Boot, "The Boat". The submarine is forced to dive deep to avoid depth charges. As it 
goes down, rivets begin to pop, and water spurts in through the tiny holes. It comes in just 
as vigorously through a hole in the floor than through a hole in the ceiling--in fact more 
so, because of the greater depth. The pressure really is all around. How can fish survive 
under these circumstances? The main difference from this point of view between fish and 
submarines is that the submarine is hollow, and the pressure inside is kept down to a level 
tolerable to humans. The rivets pop because of the difference in pressure on the two sides 
of the sheets of steel forming the hull, which begins to buckle. In the fish, on the other 
hand, the fluids inside are at the same pressure as those outside. Of course, a piece of 
solid flesh of the fish feels this pressure all around, but it takes far greater pressure to 
compress a piece of solid flesh in a damaging way. (Flesh is mostly water anyway, and 
water is almost incompressible). For a human diver to go to great depths, the gas in the 
lungs must be adjusted to a pressure approximately matching the surroundings. This can 
be done. The problem that arises is that at high pressures, nitrogen more readily dissolves 
in human blood.  As the diver comes back towards the surface, the pressure drops, and 
the nitrogen reappears in the bloodstream as small bubbles—exactly the same 
phenomenon as the bubbles that appear in a soda bottle when the top is loosened.  The 
bubbles can interrupt the blood circulation, causing great pain (the “bends”) and can be 
fatal.  So the return to surface must be gradual, to avoid a sudden appearance of large 
numbers of bubbles.  Fish are more careful about changing depth, but apparently fish 
caught at considerable depth and pulled up to the surface get the bends.  

Buoyancy 

Consider now an object totally immersed in water, for example, a submarine. The water 
is pressing on its surface on all sides, top and bottom. Notice that the pressure on the 
bottom of the submarine (which is pressing it upwards) will be greater than the pressure 
on the top (pressing it down) just because the bottom is deeper into the water than the top 
is, and, as discussed above, the pressure increases linearly with the depth. Thus the total 
effect of the pressure forces is to tend to lift the submarine. This is called buoyancy.   

To figure out how strong this buoyancy force is, imagine replacing the submarine by a 
ghost submarine—a large plastic bag filled with water, the plastic itself being extremely 
thin, and of negligible weight. The bag has the same size and shape as the submarine and 
is placed at the same depth in the water. The plastic is not stretched like a balloon, its 
natural size is just that of the submarine. Then this bag must feel the same pressure on 
each part of its surface as that on the corresponding bit of the submarine, since pressure 
only depends on depth, so the total buoyancy force on the bag must be the same as that 
on the submarine. But this bag is not going to rise or fall in the water, because it’s really 
just part of the water--the bag can be as thin as you like, and we could even choose a 
plastic having the same density as water. Since it doesn’t move, the buoyancy force 
pushing it upwards must be just balanced by the weight of the water in the bag. But we 
said that the submarine felt the same buoyancy force, so the upward force felt by the 
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submari ne is also equal to the weight of a volume of water equal to the volume of the 
submarine.  

This is the famous Principle of Archimedes:  

A body immersed, or partially immersed, in a fluid is thereby acted on by an upward 
force of buoyancy equal to the weight of the fluid displaced.   

This means that the weight of a boat, for example, must be equal to the weight of a 
volume of water equal to the volume of the part of the boat below the water line.  

Galileo and Archimedes’ Principle  

Galileo fully appreciated how important Archimedes’ Principle was in really 
understanding falling bodies of different weights, falling through media of different 
densities. In fact, he used it to great effect (page 66 on, Two New Sciences) to demolish 
Aristotle’s assertion that a body ten times heavier will fall ten times faster, irrespective of 
the medium. Of course, this is all a little unfair to Aristotle, since Archimedes enunciated 
the Principle about a century after Aristotle died. The main point, which Galileo fully 
appreciated, is that the weight of a body, which is the force causing the constant 
downward acceleration, must be reduced by the buoyancy force, so the actual total 
downward force is the weight of the body minus the weight of an equal volume of the 
fluid. To quote Galileo (page 67, TNS):  

 Thus, for example, an egg made of marble will descend in water one hundred 
times more rapidly than a hen’s egg, while in air falling from a height of twenty cubits 
the one will fall short of the other by less than four finger-breadths.  

For this to be true, and no doubt Galileo did the experiment, the hen’s egg must be about 
one per cent heavier than water.  

Furthermore, Galileo fully realized that the same effect must be taking place in air, but 
the effect there is much less dramatic in general, because air (at sea level) has a density 
only 1/800 that of water. (Galileo thought it was 1/400). So for most objects the 
buoyancy force is tiny compared to the weight. The only exceptions are the bladders 
discussed by Galileo, in other words, balloons.   

A further complication that must be borne in mind when thinking about the differing 
buoyancy forces in different media, and their effect on rates of fall, is that the different 
media also resist the motion by differing amounts. These are two quite different effects. 
The buoyancy force acts on the body even if it is at rest--it’s the force that keeps ships 
afloat. In contrast, the resistance--air resistance or water resistance--is essentially 
dynamic in character, and does not depend particularly on the density of the fluid, 
although, of course liquids resist motion more than gases. But within those groups there 
are wide variations. For example, a small steel ball, say, falling through olive oil at room 

http://www.phys.virginia.edu/classes/109N/tns61.htm
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temperature will encounter a resistive force almost one hundred times stronger than that 
felt falling the same speed through water, yet olive oil is lighter than water.   

To return to the buoyancy force in air, since it is about 1/800 that in water, and you are 
almost the same density as water, your weight as measured on a bathroom scales is 
lighter by about one part in 800 than your true weight. This is of course insignificant, but 
gives some idea how big a balloon filled with a lighter-than-air gas is needed to lift a few 
people. The lightest gas in nature is hydrogen, about 1/14 the density of air. 
Unfortunately, it is highly flammable, and early airships sometimes met a fiery end. The 
next lightest is helium, twice as heavy as hydrogen, but chemically completely 
unreactive. This is the gas used in the Goodyear blimp.   

An extremely cheap alternative is just to use hot air---you can have a big bag, open at the 
bottom, with a heater underneath the opening. The tricky point here is the hotter the air is, 
the better it works, but you don’t want to set the balloon on fire! Air raised to, say, 300F, 
has a density about two-thirds that of air at 70F, so the buoyancy you can get with hot air 
is substantially below that from helium. This means the balloon has to be a lot bigger to 
lift the same weight. Notice also that there is a limit to how high a balloon can get. The 
atmosphere gets thinner with height. This means that the weight of air displaced, and 
hence the buoyancy force, also decreases with height, so a balloon of given density can 
only reach a certain height. This can be partly compensated by making a balloon of easily 
stretched material, so as it goes up the gas pressure inside it expands it to greater size 
against the lessening outside air pressure, so increasing the buoyancy.  

Living in an Ocean 

We discussed earlier how fish living deep in the ocean adjusted to their high pressure 
environment by having equal pressure, essentially, throughout their bodies, so there were 
no stresses, in contrast to a submarine, which has lower pressure inside than out, and so a 
tendency to implode. The fish are doubtless quite unaware of the fact that they live in a 
high pressure environment, although intelligent ones might begin to figure it out if they 
saw enough submarines implode.  Fish control their depth by slight changes in buoyancy, 
achieved by moving gas in and out of an air sac, using various mechanisms: for example, 
by changing the acidity of the bloodstream, so that the solubility of oxygen in the blood 
varies. 

There is actually an analogy here to our own environment. We live at the bottom of an 
ocean of air that covers the entire planet. Although the consequent pressure is a lot less 
than that at the bottom of the Atlantic, it is by no means negligible. If we pump the air out 
of an ordinary aluminum can it will implode. The actual pressure is about fifteen pounds 
per square inch. If we think of water in a U-shaped manometer tube, open to the 
atmosphere on both sides, the air pressure is of course equal on the water in the two arms, 
and the levels are the same. If we now use a pump to remove the air above the water on 
one side, the pressure on the water lessens, and the continuing pressure in the other arm is 
no longer balanced out, so the water begins to rise in the arm with less air. This is just the 
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phenomenon of suction, the same as drinking through a straw. The important thing to see 
is that it is the outside ambient air pressure that forces the liquid up the straw.   

Once it is clear that suction simply amounts to removing air pressure, and thus allowing 
the external air pressure of fifteen pounds per square inch, to push liquid up a pipe, it is 
clear that there is a limit to what suction can achieve. As the water climbs in the pipe, the 
pressure at the bottom of the pipe from the column of water itself increases. Eventually it 
will balance off the air pressure, so even if there is a perfect vacuum above the water, it 
won’t rise any higher. It turns out that the height of a column of water that produces a 
pressure at its base of fifteen pounds per square inch is about thirty feet.  

Galileo was actually aware of this effect, but he did not realize it was a result of limited 
external pressure, he thought it arose from a limit on the strength of the suction attraction 
holding the water together. From page 16 of TNS,  

I once saw a cistern (a well) which had been provided with a pump under 
the mistaken impression that the water might thus be drawn with less 
effort or in greater quantity than by means of the ordinary bucket. The 
stock of the pump carried its sucker and valve in the upper part so that the 
water was lifted by attraction and not by a push as is the case with pumps 
in which the sucker is placed lower down. This pump worked perfectly so 
long as the water in the cistern stood above a certain level; but below this 
level the pump failed to work. When I first noticed this phenomenon I 
thought the machine was out of order; but the workman whom I called in 
to repair it told me the defect was not in the pump but in the water which 
had fallen too low to be raised through such a height; and he added that it 
was not possible, either by a pump or by any other machine working on 
the principle of attraction, to lift water a hair’s breadth above eighteen 
cubits; whether the pump be large or small this is the extreme limit of the 
lift. Up to this time I had been so thoughtless that, although I knew a rope, 
or rod of wood, or of iron, if sufficiently long, would break by its own 
weight when held by the upper end, it never occurred to me that the same 
thing would happen, only much more easily, to a column of water.  

The problem with this explanation of what held solids together, as Galileo went on to 
admit, was that a copper wire hundreds of feet long can be hung vertically without 
breaking, and it is difficult to see how suction can be that much more effective for 
copper. We now know he was on the wrong track for once, what holds solids together is 
electrical forces between atoms.  

Barometers 

The approximately fifteen pounds per square inch pressure of the atmosphere is the 
pressure measured by a barometer. A column of water in a pipe with the air removed 
from above it would be a perfectly good barometer, just not a very handy size, since it 
would be about thirty feet long, from the discussion above. The obvious way to improve 
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on this is to use a liquid heavier than water, so a less high column of it exerts the same 
pressure. The liquid of choice is mercury, or quicksilver, which is 13.6 times heavier than 
water, so we need a pipe less than three feet long. The first barometer was made by a 
pupil of Galileo’s, Evangelista Torricelli, and he explained how it worked in a letter 
written in 1644, two years after Galileo died. He wrote that the fluid rose in the pipe 
because of "the weight of the atmosphere", and "we live at the bottom of a sea of 
elemental air, which by experiment undoubtedly has weight".  

The idea of using the barometer to measure heights first occurred to a Frenchman, Blaise 
Pascal, a few years later. He wrote an account in 1648 of taking the barometer up and 
down hills and tall buildings and measuring the difference in the height of the column of 
mercury. Of course, this is a bit tricky because the height of the column also varies with 
the weather, as the atmosphere sloshes about the actual amount of air above a particular 
point varies.   

Just over a century later, on July 5, 1776, to be precise, Thomas Jefferson bought a 
barometer made in London at Sparhawk’s, a shop in Philadelphia, which he happened to 
be visiting. On September 15, 1776, he found the height of the mercury to be 29.44 
inches at Monticello, 30.06 inches at the tobacco landing on the Rivanna, and 29.14 
inches at the top of Montalto. He used a table published in London in 1725 to translate 
these differences into heights, and concluded that Montalto was 280 feet above 
Monticello, and 792 feet above the Rivanna. 

Checking Archimedes’ Principle 

Place a beaker of water about three-quarters full on a spring balance. Note the reading. 
Now dip your hand in the water, not touching the beaker, until the water reaches the top 
of he beaker. Note how much the measured weight has increased.  

 Question 1: If instead of putting your hand in the beaker, you had simply poured in extra 
water to fill it to the brim, would the measured weight have increased by the same 
amount, or more, or less? 

 Question 2: Suppose instead of dipping in your hand, you had immersed a piece of iron, 
(again not touching the beaker with the iron, of course) until the water reached the brim. 
Would this give a different reading? What if you had used a small balloon?  

Take a piece of metal hanging from a spring. Note its weight, then weigh it under water 
in the beaker. Note also the change in weight on the spring scale under the beaker. Are 
these readings related? Now lower the piece of metal until it is resting on the bottom of 
the beaker. What do the springs read now? What happened to the buoyancy? Suppose 
there was a tiny spring scale on the bottom of the beaker, under the water, and the piece 
of metal was resting on it. What would it read?  

 Cartesian divers are essentially inverted test tubes, or other small containers, with 
trapped air inside, so that they have an overall density very close to that of water. You 



 12

can put one in a container so that you can change the pressure, such as a plastic bottle 
with the top screwed on. If you increase the pressure, the diver dives. If you now release 
the pressure, it comes back up. Why? 

 Further comments: Carefully distinguishing between mass and density is nontrivial—
after all, it took Archimedes to figure it out! Also, the units are a bit confusing. The 
simple everyday units would be pounds per cubic foot. The official International Units 
for scientific work these days are the MKS system, in which the standard length is the 
meter, just over a yard, and the standard weight is the kilogram, 2.2 pounds. The official 
unit of volume is then the cubic meter, about what a small pickup truck can carry, not a 
real handy size! The old official metric unit of volume was the cubic centimeter, and that 
was the amount of water that weighed one gram. In the new system, then, the new unit of 
volume is one million times bigger, and one cubic meter of water weighs 1,000 
kilograms, which is one ton! A more handy unit of volume is the liter, 1,000 cubic 
centimeters (cc’s), and a liter of water weighs one kilogram.   

Question: As you know from floating in a pool, the human body has a density close to 
that of water. You know your own weight. What is your volume? 
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Boyle’s Law and the Law of Atmospheres 
 
How Boyle established his famous Law PV = constant at constant temperature, and how 
we can use it to discover the rate of decrease of atmospheric pressure with altitude. 

Introduction 
We’ve discussed the concept of pressure in the previous lecture, introduced units of 
pressure (Newtons per square meter, or Pascals, and the more familiar pounds per square 
inch) and noted that a fluid in a container exerts pressure on all the walls, vertical as well 

as horizontal—if a bit of wall is removed, 
the fluid will squirt out. 

Gas 

Moveable  
piston 

 
Everyone knows that although water (like 
other liquids) is pretty much 
incompressible, air is compressible—you 
can squeeze a small balloon to a 
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noticeably smaller volume with your hands, and you can push in a bicycle pump to some 
extent even if you block the end so no air escapes.  . Boyle was the first person to make a 
quantitative measurement of how the volume of a fixed amount of air went down as the 
pressure increased.  
 
One might imagine doing the experiment with gas in a cylinder as in the diagram here, 
putting on different weights and measuring the volume of the gas.  Once the piston is at 
rest, the pressure of the gas multiplied by the area of the piston would just balance the 
weight of the piston plus the added weight, so the pressure is easy to find. 
 
But there is one tricky point here: if the gas is compressed fairly rapidly—such as by 
adding a substantial weight, so the piston goes down suddenly—the gas heats up.  Then, 
as the heat escapes gradually through the walls of the cylinder, the gas gradually settles 
into an even smaller volume. 
 
Boyle’s idea was to find out how the volume of the gas varied with outside pressure if the 
temperature of the gas stayed the same.  So, if he’d done his experiment with the cylinder 
pictured above, he would have had to wait quite a time between volume measurements to 
be sure the gas was back to room temperature. 
 
But Boyle didn’t use a piston and cylinder.  He did the experiment in 1662.  Possibly the 
gun barrels manufactured at the time would have worked, with a greasy piston (I’m not 
sure) but he found a very elegant alternative: he trapped the air using mercury in a closed 
glass tube, and varied the pressure as explained below (in his own words).  
 
He found a simple result: if the pressure was doubled, at constant temperature, the gas 
shrank to half its previous volume. If the pressure was tripled, it went to one-third the 
original volume, and so on.  That is, for pressure P and volume V, at constant temperature 
T,   PV = constant.  This is Boyle’s Law. 
 
After reviewing Boyle’s ingenious experiment, we shall see how Boyle’s Law is the key 
to understanding a central feature of the earth’s atmosphere: just how the density and 
pressure of air decreases with altitude.  Of course, the temperature of the atmosphere also 
varies with height and weather, complicating the picture, but Boyle’s law gives us a very 
good start in analyzing the situation. 

Boyle’s Experiment 
(See diagram below) 
 
Robert Boyle was born on 1627, the fourteenth child of the Earl of Cork, an Irish 
landowner.  
He wrote the account below in 1662. (It is from his book A Defense of the Doctrine 
Touching the Spring and Weight of the Air. I’ve added some notes in square brackets, 
which I hope clarify what’s going on.  Regular brackets, (  ), are Boyle’s own.) 
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“We took then a long glass-tube, which, by a dexterous hand and the help of a lamp, 
[heating it so it softens] was in such a manner crooked at the bottom, that the part turned 
up was almost parallel to the rest of the tube [they bent it into the shape in the diagram] 
and the orifice of this shorter leg of the siphon (if I may so call the whole instrument) 
being hermetically sealed, the length of it was divided into inches (each of which was 
subdivided into eight parts) by a streight list of paper, which containing those divisions 
was carefully pasted all along it.  Then putting in as much quicksilver as served to fill the 
arch or bended part of the siphon, that the mercury standing in a level might reach in the 
one leg to the bottom of the divided paper, and just to the same height of horizontal line 
in the other; we took care, by frequently inclining the tube, so that the air might freely 
pass from one leg into the other by the sides of the mercury (we took, I say, care) that the 
air at last included in the shorter cylinder should be of the same laxity with the rest of the 
air about it. [He means at the same pressure, that is, the normal atmospheric pressure.] 
 
This done, we began to pour quicksilver into the longer leg of the siphon, which by its 
weight pressing up that in the shorter leg, did by degrees streighten [compress] the 
included air: and continuing this pouring in of quicksilver till the air in the shorter leg 
was by condensation reduced to take up by half the space it possessed before; we cast our 
eyes upon the longer leg of the glass, on which was likewise pasted a list of paper 
carefully divided into inches and parts, and we observed, not without delight and 
satisfaction, that the quicksilver in that longer part of the tube was twenty-nine inches 
higher than the other.”   
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 Trapped air 
volume down by 
factor of 2 

Air trapped in 
sealed end 

Atmospheric 
pressure 

Mercury 

Mercury added 

Atmospheric 
pressure 

 
0.76m = 29in. of 
Mercury = 1 atm. 

Boyle found that when more mercury was poured into the tube, increasing 
pressure on the trapped air, the air volume halved if the total pressure, 
including that from the atmosphere, was doubled. 

 
 
Boyle’s “delight and satisfaction” in that last sentence arose because he knew that the 
extra pressure exerted by the added twenty-nine inches of mercury was equal to an extra 
atmosphere, so the air trapped in the shorter tube had halved in volume when the pressure 
was doubled.  He went on the repeat the experiment many times, with different heights of 
the column of mercury in the longer tube, and checking each day on the actual 
atmospheric pressure at the time of the experiment.    
 
He established Boyle’s Law,  

PV = const 
 

for the range of pressures he used.  It is important to note that in his experiments he 
allowed a long enough time between volume measurements for the trapped air to get back 
to room temperature. 
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The Law of Atmospheres: An Ocean of Water 
First, a quick reminder of how we found the pressure variation with depth in an ocean of 
water at rest.  We imagine isolating a small cylinder of water, with its axis vertical, and 
construct a free body diagram:  

 
 Pressure  ( )P h h+ Δ  
The pressure forces from the surrounding 
water acting on the curved sides 
obviously all cancel each other.  So the 
only forces that count are the weight of 
the cylinder of water, and the pressure 
forces on the top and the bottom—that on 
the bottom being greater, since it must 
balance the pressure on the top plus the 
weight, since the cylinder is at rest. 
 
Taking the cylinder to have cross-section 
area A, height hΔ , and the water to have 
density ρ , the cylinder has volume 

, mass A hΔ A hρ Δ , and therefore weight  .A hgρ Δ    
 
The pressure P is a function of height h above the bottom, ( ).P P h=  
 
We’ve measured h here from the bottom of the ocean, because in the next section, we’ll 
apply the same analysis to the atmosphere, where we do live at the bottom of the “sea”. 
 
The pressure on top of the cylinder exerts a downward force equal to 
 

( )pressure area P h h A× = + Δ  

the bottom feels an upward pressure ( )P h A , so since the total force must be zero, 
 

( ) ( ) 0P h h A P h A A hgρ+ Δ − + Δ = . 
 

 
This equation can be rearranged to: 
 

( ) ( )P h h P h
g

h
ρ

+ Δ −
= −

Δ
. 

 

Recalling that the differential is defined by ( ) ( ) ( )
0

lim
x

df x f x x f x
dx xΔ →

+ Δ −
=

Δ
, we see that 

this pressure equation in the limit 0hΔ →  becomes:  

Pressure  ( )P h

Area A 

hΔ  
mg 
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( ) /dP h dh gρ= − . 

 
Since gρ  is a constant, the solution is simple: 

  
( ) ( )0P h g h hρ= − −  

 
where we’ve written the constant of integration in the form 0ghρ .  Notice the pressure in 
this ocean drops to zero at height h = h0 – obviously the surface!  This means our formula 
describes water pressure in an ocean of depth h0, and is just a different way of writing 
that the pressure is gρ  times the depth below the surface. (We are subtracting off the 
atmospheric pressure acting down on the ocean’s surface from the air above it—we’re 
just considering the extra pressure from the weight of the water itself as we descend. 
Remember air pressure is the same as approximately thirty feet of water, so is a small 
correction in a real ocean) 

An Ocean of Air 
We now go through exactly the same argument for an “ocean of air”, drawing the same 
free body diagram for a small vertical cylinder, and arriving at the same differential 
equation, 
 

( ) /dP h dh gρ= − . 
 

But it doesn’t have the same solution!  The reason is that ρ , which we took to be 
constant for water (an excellent approximation), is obviously not constant for air.  It is 
well known that the air thins out with increasing altitude.   
 
The key to solving this equation is Boyle’s Law: for a given quantity of gas, it has the 
form , but notice that means that if the pressure of the gas is doubled, the gas 
is compressed into half the space, so its density is also doubled.   

const.PV =

 
So an alternative way to state Boyles law is 
 

( ) ( )h CP hρ =  
 

where C is a constant (assuming constant temperature).  Putting this in the differential 
equation: 
 

( ) ( )/dP h dh CP h g= − . 
 

This equation can be solved (if this is news to you, see the footnote at end of this 
section): 
 



 18

( ) 0
CghP h P e−= . 

 
The air density decreases exponentially with height: this equation is the Law of 
Atmospheres.  
 
This density decrease doesn’t happen with water because water is practically 
incompressible. One analogy is to imagine the water to be like a tower of bricks, one on 
top of the other, and the air a tower of brick-shaped sponges, so the sponges at the bottom 
are squashed into much greater density—but this isn’t quite accurate, because at the top 
of the atmosphere, the air gets thinner and thinner without limit, unlike the sponges. 
 
 
Footnote: Solving the Differential Equation 
 

The equation is the same as ( ) ( )df x
af x

dx
= , where a is a constant. If you are already 

familiar with the exponential function, and know that ax axd e ae
dx

= , you can see the 

equation is solved by the exponential function.  Otherwise, the equation can be 

rearranged to df adx
f
= , then integrated using lndf f

f
=∫ to give ( )ln f x ax= + c , with c 

a constant of integration. Finally, taking the exponential of each side, using 
( ) ( )ln f xe f= x , gives ( ) axf x Ce= , where cC e= . 

 

Exercises 
1.  Atmospheric pressure varies from day to day, but 1 atm is defined as 1.01 x 105 Pa.  
Calculate how far upwards such a pressure would force a column of water in a “water 
barometer”.  
  
2.  The density of air at room temperature is about 1.29 kg/m3.  Use this together with the 
definition of 1 atm above to find the constant C in the Law of Atmospheres written 
above. Use your result to estimate the atmospheric pressure on top of the Blue Ridge (say 
4000 feet), Snowmass (11,000 feet) and Mount Everest (29,000 feet). 
  
3.  As a practical matter, how would you measure the density of air in a room?  Actually, 
Galileo did this in the early 1600’s. Can you figure out how he managed to do it?  (His 
result was off by a factor of two, but that was still pretty good!)  
 

The Bernoulli Effect 
Contrary to most peoples’ intuition, when fluid flowing through a pipe encounters a 
narrower section, the pressure in the fluid goes down.  We show how this must follow 
from Newton’s Laws, and demonstrate the effect. 
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Suppose air is being pumped down a smooth round tube, which has a constant diameter 
except for a section in the middle where the tube narrows down to half the diameter, then 
widens out again.  Assume all the changes in diameter take place smoothly, and the air 
flows steadily down the tube, with no eddies or turbulence.  
 
Question: where in the tube do you expect the pressure to be greatest? 
 
Most people asked this for the first time predict that the pressure will be greatest in the 
narrow portion of the tube.  But in fact, if we actually do the experiment, by putting 
pressure gauges at various points along the tube, we find, counter intuitively, that the air 
pressure is lowest where the air is moving fastest! 
 

 
 

The difference in heights of the dark liquid in the two arms of the U-tubes measures the 
pressure difference between that point in the flow tube and the outside atmospheric 
pressure. 
 
To see how this could be, we will apply the techniques we developed to find how 
pressure varied in a stationary fluid. The way we did that, remember, was by drawing a 
free body diagram for a small cylinder of fluid.  Since this small cylinder was at rest, the 
total force on it was zero, so the net pressure balanced the weight.  Now consider a 
steadily moving fluid.   It’s helpful to visualize the flow by drawing in streamlines, lines 
such that their direction is the direction the fluid is moving in at each point. 
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Actually, these streamlines not only tell you the direction the fluid is moving in, but also 
gives some idea of the speed—where they come closer together, the fluid must be 
moving faster, because the same amount of fluid is flowing through a narrower region.  
 
Imagine now a cylinder of air moving along the pipe, its axis parallel to the streamline.  
Obviously, it must speed up as it enters the narrow part of the tube—since the same 
amount of air is flowing through the narrow part as the wide part, it must be going faster.  
 
But if the small cylinder of fluid is accelerating, it must be acted on by a force pushing it 
from behind.  
 
Its weight is irrelevant here, since it’s moving horizontally.  Therefore the only force 
acting on it is the pressure, and we have to conclude that the pressure at its back is greater 
than the pressure on its front.  Therefore the pressure must be dropping on entering the 
narrow part.  
 
To make clearer what’s going on, we’ll draw a rather large cylinder: 
 

Area A1 

Area A2 Area A′2 

Area A′1 Flow 

v2Δt 
v1Δt 

 
 
The fluid is flowing steadily and smoothly along the pipe.  The thick blue lines are 
streamlines, in fact you should imagine rotating the whole diagram about the central axis 
to get a three-dimensional picture, and the blue lines would become a cylinder, with a 
narrower “neck” section, echoing the shape of the pipe. 
 
Now consider the body of fluid within the streamlines shown, and capped at the two ends 
by the circular areas A1 and A2.   The rate of flow of fluid across A1 must be the same as 
the rate of flow across A2, because in steady flow fluid can’t be piling up in the middle 
(or depleting from there either).  The volume flowing across A1 in one second is v1A1.  
(To see this, imagine a long straight pipe without a narrow part.  If the fluid is flowing at, 
say 3 meters per second, then in one second all the fluid which was within 3 meters of the 
area A1 on the upstream side will have flowed through.) 
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So, flow across A1 equals flow across A2,  
 

1 1 2 2A v A v= . 
 
(Footnote: It’s perhaps worth mentioning that we are implicitly assuming the velocity is 
the same at all points on area A1.  Any real fluid has some viscosity (friction) and will be 
moving more slowly near the sides of the pipe than in the middle.  We’ll discuss this 
later.  For now, we consider an “ideal” fluid, the term used when one ignores viscosity.  
In fact, the result we derive is ok—we could have taken a tiny area A1 far away from the 
sides, so that the velocity would have been the same for the whole area, but that would 
have given a much less clear diagram.) 
 
We’re now ready to examine the increase in kinetic energy of the fluid as it speeds up 
into the narrow part, and understand how the pressure difference did the work necessary 
to speed it up. 
 
Suppose that after a time Δt, the fluid that was at an initial instant between A1 and A2 has 
moved to the volume between A′1 and A′2.   As far as the chunk of fluid we’re tracking is 
concerned, it has effectively replaced a volume 1 1A v tΔ  moving at v1 with a volume 

 moving at v2.  But remember 2 2A v tΔ 1 1 2 2A v A v= , so if the density of the fluid is ρ , 
we’re talking about a mass of fluid 1 1A v tρ Δ  which has effectively increased in speed 
from v1 to v2.  That is to say, the increase in kinetic energy is just 
 

( ) ( )( )2 21
1 1 2 12. .K E A v t vρΔ = Δ − v . 

 
The only possible source for this increase in energy is the work done by pressure in 
pushing the fluid into the narrow part.  
 
Taking the pressure on area A1 to be P1, the total force on A1 is .  In the time , this 
force acts through a distance , and hence does work = 

1 1P A tΔ

1v tΔ 1 1 1force  distance P A v t× = Δ .   
 
So this is work done on our chunk of fluid by the fluid pushing it from behind—but that’s 
not the end of the story, because our chunk of fluid itself does work pushing the fluid in 
front of it, so to find the total increase in our chunk’s energy, we must subtract off the 
external work it does.  That is, the total work done by pressure on our fluid is  
 

( )1 1 1 2 2 2 1 2 1 1P A v t P A v t P P A v tΔ − Δ = − Δ  
remembering that . 1 1 2 2A v A v=
 
This work done must equal the change in kinetic energy, so 
 

( ) ( )( )2 21
1 2 1 1 1 1 2 12P P A v t A v t v vρ− Δ = Δ −  

from which 
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2 21 1

1 1 22 2 .P v P v2ρ ρ+ = +  
 
 
This is Bernoulli’s equation.   
 
There is a further easy generalization:  we could have the pipe sloping uphill.  In that 
case, the fluid would gain potential energy as well as kinetic energy, so the pressure 
would have to do more work.  If we take the center of the area A1 to be at height h1, the 
area A2 at h2, and take  very small, the increase in potential energy in time  will be tΔ tΔ
( ) ( )1 1 2 1A v t g h hρ Δ − , and Bernoulli’s equation becomes: 
 

2 21 1
1 1 1 2 22 2 .P v gh P v ghρ ρ ρ ρ+ + = + + 2  

Viscosity 
 
After briefly reviewing friction between solids, we examine viscosity in liquids and gases, 
building up some understanding of what’s going on at the molecular level.  This makes it 
possible to understand some surprising results: for example, the viscosity of a gas does 
not change if the gas is compressed to greater density. 

Introduction: Friction at the Molecular Level 
Viscosity is, essentially, fluid friction.  Like friction between moving solids, viscosity 
transforms kinetic energy of (macroscopic) motion into heat energy.  Heat is energy of 
random motion at the molecular level, so to have any understanding of how this energy 
transfer takes place, it is essential to have some picture, however crude, of solids and/or 
liquids sliding past each other as seen on the molecular scale. 
 
To begin with, we’ll review the molecular picture of friction between solid surfaces, and 
the significance of the coefficient of frictionμ  in the familiar equation F Nμ= .   Going 
on to fluids, we’ll give the definition of the coefficient of viscosity for liquids and gases, 
give some values for different fluids and temperatures, and demonstrate how the 
microscopic picture can give at least a qualitative understanding of how these values 
vary: for example, on raising the temperature, the viscosity of liquids decreases, that of 
gases increases.  Also, the viscosity of a gas doesn’t depend in its density!  These 
mysteries can only be unraveled at the molecular level, but there the explanations turn out 
to be quite simple. 
 
As will become clear later, the coefficient of viscosity η  can be viewed in two rather 
different (but of course consistent) ways: it is a measure of how much heat is generated 
when faster fluid is flowing by slower fluid, but it is also a measure of the rate of transfer 
of momentum from the faster stream to the slower stream.  Looked at in this second way, 
it is analogous to thermal conductivity, which is a measure of the rate of transfer of heat 
from a warm place to a cooler place. 
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Quick Review of Friction Between Solids 
First, static friction: suppose a book is lying on your desk, and you tilt the desk.  At a 
certain angle of tilt, the book begins to slide.  Before that, it’s held in place by “static 
friction”.  What does that mean on a molecular level?  There must be some sort of 
attractive force between the book and the desk to hold the book from sliding.   
 
Let’s look at all the forces on the book: gravity is pulling it vertically down, and there is a 
“normal force” of the desk surface pushing the 
book in the direction normal to the desk surface.  
(This normal force is the springiness of the 
desktop, slightly compressed by the weight of the 
book.)   When the desk is tilted, it’s best to 
visualize the vertical gravitational force as made 
up of a component normal to the surface and one 
parallel to the surface (downhill).  The 
gravitational component perpendicular to the 
surface is exactly balanced by the normal force, 
and if the book is at rest, the “downhill” 
component of gravity is balanced by a frictional 
force parallel to the surface in the uphill direction.  
On a microscopic scale, this static frictional force 
is from fairly short range attractions between 
molecules on the desk and those of the book. 

N 
F 

mgsinθ θ 

mgcosθ 

 
Question:  but if that’s true, why does doubling the normal force double this frictional 
force? (Recall F Nμ= , where N is the normal force, F is the limiting frictional force just 
before the book begins to slide, and μ  is the coefficient of friction.  By the way, the first 
appearance of F being proportional to N  is in the notebooks of Leonardo da Vinci.) 
 
Answer :  Solids are almost always rough on an atomic scale: when two solid surfaces are 
brought into contact, in fact only a tiny fraction of the common surface is really in 
contact at the atomic level. The stresses within that tiny area are large, the materials 
distort plastically and there is adhesion.  The picture can be very complex, depending on 
the materials involved, but the bottom line is that there is only atom-atom interaction 
between the solids over a small area, and what happens in this small area determines the 
frictional force.  If the normal force is doubled (by adding another book, say) the tiny 
area of contact between the bottom book and the desk will also double—the true area of 
atomic contact increases linearly with the normal force—that’s why friction is 
proportional to N.  Within the area of “true contact” extra pressure makes little difference.  
(Incidentally, if two surfaces which really are flat at the atomic level are put together, 
there is bonding.  This can be a real challenge in the optical telecommunications industry, 
where wavelength filters (called etalons) are manufactured by having extremely flat, 
highly parallel surfaces of transparent material separated by distances comparable to the 
wavelength of light.  If they touch, the etalon is ruined.) 
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On tilting the desk more, the static frictional force turns out to have a limit—the book 
begins to slide.  But there’s still some friction: experimentally, the book does not have the 
full acceleration the component of gravity parallel to the desktop should deliver.  This 
must be because in the area of contact with the desk the two sets of atoms are constantly 
colliding, loose bonds are forming and breaking, some atoms or molecules fall away.  
This all causes a lot of atomic and molecular vibration at the surface. In other words, 
some of the gravitational potential energy the sliding book is losing is ending up as heat 
instead of adding to the book’s kinetic energy.  This is the familiar dynamic friction you 
use to warm your hands by rubbing them together in wintertime.  It’s often called kinetic 
friction.  Like static friction, it’s proportional to the normal force: KF Nμ= .  The 
proportionality to the normal force is for the same reason as in the static case: the kinetic 
frictional drag force also comes from the tiny area of true atomic contact, and this area is 
proportional to the normal force. 
 
A full account of the physics of friction (known as tribology) can be found, for example, 
in Friction and Wear of Materials, by Ernest Rabinowicz, second Edition, Wiley, 1995. 

Liquid Friction 
What happens if instead of two solid surfaces in contact, we have a solid in contact with a 
liquid?  First, there’s no such thing as static friction between a solid and a liquid.  If a 
boat is at rest in still water, it will move in response to the slightest force.  Obviously, a 
tiny force will give a tiny acceleration, but that’s quite different from the book on the 
desk, where a considerable force gave no acceleration at all.  But there is dynamic liquid 
friction—even though an axle turns a lot more easily if oil is supplied, there is still some 
resistance, the oil gets warmer as the axle turns, so work is being expended to produce 
heat, just as for a solid sliding across another solid. 
 
One might think that for solid/liquid friction there would be some equation analogous to 

KF Nμ= :  perhaps the liquid frictional force is, like the solid, proportional to pressure?  
But experimentally this turns out to be false—there is little dependence on pressure over 
a very wide range.  The reason is evidently that since the liquid can flow, there is good 
contact over the whole common area, even for low pressures, in contrast to the solid/solid 
case.  

Newton’s Analysis of Viscous Drag 
Isaac Newton was the first to attempt a quantitative definition of a coefficient of 
viscosity.  To make things as simple as possible, he attempted an experiment in which the 
fluid in question was sandwiched between two large parallel horizontal plates.  The 
bottom plate was held fixed, the top plate moved at a steady speed v0, and the drag force 
from the fluid was measured for different values of v0, and different plate spacing.  
(Actually Newton’s experiment didn’t work too well, but as usual his theoretical 
reasoning was fine, and fully confirmed experimentally by Poiseuille in 1849 using liquid 
flow in tubes.)  
 
Newton assumed (and it has been amply confirmed by experiment) that at least for low 
speeds the fluid settles into the flow pattern shown below.  The fluid in close contact with 
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the bottom plate stays at rest, the fluid touching the top plate gains the same speed v0 as 
that plate, and in the space between the plates the speed of the fluid increases linearly 
with height, so that, for example, the fluid halfway between the plates is moving at ½ v0: 
 

x  

z  

Top plate moves at v0 

d  Fluid velocities 

Bottom plate at rest 

 
Just as for kinetic friction between solids, to keep the top plate moving requires a steady 
force.  Obviously, the force is proportional to the total amount of fluid being kept in 
motion, that is, to the total area of the top plate in contact with the fluid.  The significant 
parameter is the horizontal force per unit area of plate, F/A, say.  This clearly has the 
same dimensions as pressure (and so can be measured in Pascals) although it is physically 
completely different, since in the present case the force is parallel to the area (or rather to 
a line within it), not perpendicular to it as pressure is.   
 
(Note for experts only: Actually, viscous drag and pressure are not completely 
unrelated—as we shall discuss later, the viscous force may be interpreted as a rate of 
transfer of momentum into the fluid, momentum parallel to the surface that is, and 
pressure can also be interpreted as a rate of transfer of momentum, but now perpendicular 
to the surface, as the molecules bounce off.  Physically, the big difference is of course 
that the pressure doesn’t have to do any work to keep transferring momentum, the 
viscous force does.) 
 
Newton conjectured that the necessary force F/A would be proportional to the velocity 
gradient in the vicinity of the top plate.  In the simple geometry above, the velocity 
gradient is the same everywhere between the plates, v0/d,  so  
 

0/ /F A v dη=  
 
defines the coefficient of viscosity η . The SI units of η are Pascal.seconds, or Pa.s. 
 
A convenient unit is the milliPascal.second, mPa.s. (It happens to be close to the viscosity 
of water at room temperature.)  Confusingly, there is another set of units out there, the 
poise, named after Poiseuille—usually seen as the centipoise, which happens to equal the 
millipascal.second!  And, there’s another viscosity coefficient in common use: the kinetic 
viscosity, /ν μ ρ= , where ρ  is the fluid density.  This is the relevant parameter for 
fluids flowing downwards gravitationally.  But we’ll almost always stick with η . 
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Here are some values of η  for common liquids:  
 

 
Some of these are obviously ballpark – the others 
probably shouldn’t be trusted to be better that 1% or 
so, glycerin maybe even 5-10% (see CRC Tables); 
these are quite difficult measurements, very sensitive 
to purity (glycerin is hygroscopic) and to small 
temperature variations.    
 
 
 
 
To gain some insight into these very 
different viscosity coefficients, we’ll try to 
analyze what’s going on at the molecular 
level. 

 

A Microscopic Picture of Viscosity 
in Laminar Flow 
For Newton’s picture of a fluid sandwiched 
between two parallel plates, the bottom one 
at rest and the top one moving at steady 
speed, the fluid can be pictured as made up 
of many layers, like a pile of printer paper, 

each sheet moving a little faster than the sheet below it in the pile, the top sheet of fluid 
moving with the plate, the bottom sheet at rest. This is called laminar flow: laminar just 
means sheet (as in laminate, when a sheet of something is glued to a sheet of something 
else).  If the top plate is gradually speeded up, at some point laminar flow becomes 
unstable and turbulence begins.  We’ll assume here that we’re well below that speed. 

Liquid Viscosity in 
mPa.s 

Water at 0°C 1.79 
Water at 20°C 1.002 
Water at 
100°C 

0.28 

Glycerin  at 
0°C 

12070 

Glycerin  at 
20°C 

1410 

Glycerin  at 
30°C 

612 

Glycerin  at 
100°C 

14.8 

Mercury  at 
20°C 

1.55 

Mercury at 
100°C 

1.27 

Motor Oil 
SAE 30  

200 

Motor Oil 
SAE 60 

1000 

Ketchup 50,000 

 
So where’s the friction?  It’s not between the fluid and the plates (or at least very little of 
it is—the molecules right next to the plates mostly stay in place) it’s between the 
individual sheets—throughout the fluid.  Think of two neighboring sheets, the molecules 
of one bumping against their neighbors as they pass.  As they crowd past each other, on 
average the molecules in the faster stream are slowed down, and those in the slower 
stream speeded up.  Of course, momentum is always conserved, but the macroscopic 
kinetic energy of the sheets of fluid is partially lost—transformed into heat energy. 
 
Exercise:  Suppose a mass m of fluid moving at v1 in the x-direction mixes with a mass m 
moving at v2 in the x-direction.  Momentum conservation tells us that the mixed mass 2m 
moves at ½( v1 + v2).  Prove that the total kinetic energy has decreased if v1, v2 are 
unequal. 
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This is the fraction of the kinetic energy that has disappeared into heat. 
 
This molecular picture of sheets of fluids moving past each other gives some insight into 
why viscosity decreases with temperature, and at such different rates for different fluids.  
As the molecules of the faster sheet jostle past those in the slower sheet, remember they 
are all jiggling about with thermal energy.  The jiggling helps break them loose if they 
get jammed temporarily against each other, so as the temperature increases, the molecules 
jiggle more furiously, unjam more quickly, and the fluid moves more easily—the 
viscosity goes down.   
 
This drop in viscosity with temperature is 
dramatic for glycerin. A glance at the 
molecule suggests that the zigzaggy shape 
might cause jamming, but the main cause 
of the stickiness is that the outlying H’s in 
the OH groups readily form hydrogen 
bonds (see Atkins’ Molecules, Cambridge).   

C C 

OH C OH

OH

 
For mercury, a fluid of round atoms, the 
drop in viscosity with temperature is 
small.  Mercury atoms don’t jam much, 
they mainly just bounce off each other (but even that bouncing randomizes their 
direction, converting macroscopic kinetic energy to heat).  Water molecules are in 
between glycerin and mercury in complexity.  Looking at the table above, it is evident 
this simple picture makes at least qualitative sense of the data. 

Glycerin Molecule: other carbon 
valence bonds have H atoms. 

 
Another mechanism generating viscosity is the diffusion of faster molecules into the 
slower stream and vice versa.  As discussed below, this is far the dominant factor in 
viscosity of gases, but is much less important in liquids, where the molecules are crowded 
together and constantly bumping against each other. 
 
This temperature dependence of viscosity is a real problem in lubricating engines that 
must run well over a wide temperature range.  If the oil gets too runny (that is, low 
viscosity) it will not keep the metal surfaces from grinding against each other; if it gets 
too thick, more energy will be needed to turn the axle.  “Viscostatic” oils have been 
developed: the natural decrease of viscosity with temperature (“thinning”) is 
counterbalanced by adding polymers, long chain molecules at high temperatures that curl 
up into balls at low temperatures. 

Oiling a Wheel Axle 
The simple linear velocity profile pictured above is actually a good model for ordinary 
lubrication.  Imagine an axle of a few centimeters diameter, say about the size of a fist, 
rotating in a bearing, with a 1 mm gap filled with SAE 30 oil, having 200 mPa.s.η =   
(Note: mPa, millipascals, not Pascals!  1Pa = 1000mPa.)  
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If the total cylindrical area is, say, 100 sq 
cm., and the speed is 1 m.s-1, the force per 
unit area (sq. m.) 
 
 3 3

0/ / 200 10 1/10 200F A v dη − −= = ⋅ ⋅ =
 
 
So for our 100 sq.cm bearing the force 

needed to overcome the viscous “friction” is 2N.  At the speed of 1 m sec-1, this means 
work is being done at a rate of 2 joules per sec., or 2 watts, which is heating up the oil.  
(This heat must be conducted away, or the oil continuously changed by pumping, 
otherwise it will get too hot.) 

*Viscosity: Kinetic Energy Loss and Momentum Transfer 
So far, we’ve viewed the viscosity coefficient η  as a measure of friction, of the 
dissipation into heat of the energy supplied to the fluid by the moving top plate.  But η  is 
also the key to understanding what happens to the momentum the plate supplies to the 
fluid. 
 
For the picture above of the steady fluid flow between two parallel plates, the bottom 
plate at rest and the top one moving, a steady force per unit area  in the x-direction 
applied to the top plate is needed to maintain the flow.   

/F A

 
From Newton’s law ,   is the rate at which momentum in the x-direction 
is being supplied (per unit area) to the fluid.  Microscopically, molecules in the 
immediate vicinity of the plate either adhere to it or keep bouncing against it, picking up 
momentum to keep moving with the plate (these molecules also constantly lose 
momentum by bouncing off other molecules a little further away from the plate).  

/F dp dt= /F A

 
Question:  But doesn’t the total momentum of the fluid stay the same in steady flow? 
Where does the momentum fed in by the moving top plate go? 
 
Answer: the x-direction momentum supplied at the top passes downwards from one layer 
to the next, ending up at the bottom plate (and everything it’s attached to).  Remember 
that, unlike kinetic energy, momentum is always conserved—it can’t disappear.  
 

Rotating 
axle 

Oil 
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x-direction momentum supplied by top plate 

x-direction momentum is absorbed by bottom plate x  

z  (fluid flow)  
d  

x-direction momentum flows down in z-direction 

 
 
So, there is a steady flow in the z-direction of x-direction momentum.  Furthermore, the 
left-hand side of the equation 

0/ /F A v dη=  
 

is just this momentum flow rate.  The right hand side is the coefficient of viscosity 
multiplied by the gradient in the z-direction of the x-direction velocity. 
 
Viewed in this way, 0/ /F A v dη= is a ansport equation.  It tells us that the rate of 
transport of x-direction momentum downwards is proportional to the rate of change of x-
direction velocity in that direction, and the constant of proportionality is the coefficient of 
viscosity.  And, we can express this slightly differently by noting that the rate of change 
of x-direction velocity is proportional to the rate of change of x-direction momentum 
density. 

tr

 
Recall that we mentioned earlier the so-called kinetic viscosity coefficient, /ν μ ρ= .  
Using that in the equation  
 

0 0/ /F A v d v d/η νρ= = , 
 
replaces the velocity gradient with a x-direction momentum gradient.  To abbreviate a 
clumsy phrase, let’s call the x-direction momentum density xπ , and the current of this in 
the z-direction ( )z xJ π .  Then our equation becomes 
 

 ( ) .x
z x

dJ
dz
ππ ν=  

 
The current of xπ  in the z-direction is proportional to how fast xπ  is changing in that 
direction. 
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This closely resembles heat flowing from a hot spot to a cold spot: heat energy flows 
towards the place where there is less of it, “downhill” in temperature.  The rate at which 
it flows is proportional to the temperature gradient, and the constant of proportionality is 
the thermal conductivity (see later).   Here, the xπ  momentum flow is analogous: it too 
flows to where there is less of it, and the kinetic viscosity coefficient corresponds to the 
thermal conductivity. 

*Viscosity in Gases 
Suppose now we repeat Newton’s suggested experiment, the two parallel plates with one 
at rest the other moving at steady speed, but with gas rather than liquid between the 
plates.   
 
It is found experimentally that the equation /F A v d/η=  still describes the force 
necessary to maintain steady motion, but, not surprisingly, for gases anywhere near 
atmospheric pressure the coefficient of viscosity is far lower than that for liquids (not 
counting liquid helium—a special case): 
 

Gas Viscosity in 10-6 
Pa.s 

Air at 100K 7.1 
Air at 300K 18.6 
Air at 400K 23.1 
Hydrogen at 
300K 

9.0 

Helium at 
300K 

20.0 

Oxygen at 
300K 

20.8 

Nitrogen at 
300K 

17.9 

Xenon at 
300K 

23.2 

These values are from the CRC Handbook, 85th Edition, 6-201. 
 
Note first that, in contrast to the liquid case, gas viscosity increases with temperature. 
Even more surprising, it is found experimentally that over a very wide range of densities, 
gas viscosity is independent of the density of the gas!  
 
Returning to the two plates, and picturing the gas between as made up of layers moving 
at different speeds as before:  
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z  

Top plate moves at v0 

d  Gas velocities 

Bottom plate at rest 

 
 
The first thing to realize is that at atmospheric pressure the molecules take up something 
like a thousandth of the volume of the gas.  The previous picture of crowded molecules 
jostling each other is completely irrelevant!  As we shall discuss in more detail later, the 
molecules of air at room temperature fly around at about 500 meters per second, the 
molecules have diameter around 0.35 nm, are around 3 or 4 nm apart on average, and 
travel of order 70 nm between collisions with other molecules. 
 
So where does the gas viscosity come from?  Think of two adjacent layers of gas moving 
at different speeds. Molecules from the fast layer fly into the slow layer, where after a 
collision or two they are slowed to go along with the rest.  At the same time, some slower 
molecules fly into the fast layer.  Even if we assume that kinetic energy is conserved in 
each individual molecular collision (so we’re ignoring for the moment excitation of 
internal modes of the molecules) the macroscopic kinetic energy of the layers of gas 
decreases overall (see the exercise in the preceding section).  How can that be? Isn’t 
energy conserved?  Yes, total energy is conserved, what happens is that some of the 
macroscopic kinetic energy of the gas moving as a smooth substance has been transferred 
into the microscopic kinetic energy of the individual molecules moving in random 
directions within the gas, in other words, into the random molecular kinetic energy we 
call heat.   

*Estimating the Coefficient of Viscosity for a Gas: Momentum 
Transfer and Mean Free Path 
The way to find the viscosity of a gas is to calculate the rate of z-direction (downward) 
transfer of x-momentum, as explained in the previous section but one. 
 
The moving top plate maintains a steady horizontal flow pattern, the x-direction speed at 
height z  

( ) 0 /v z v z d=  
 
As explained above, the moving plate is feeding x-direction momentum into the gas at a 
rate 0/F A v d/η= , this momentum moves down through the gas at a steady rate, and the 
coefficient of viscosity tells us what this rate of momentum flow is for a given velocity 
gradient.  
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In fact, this rate of momentum flow can be calculated from a simple kinetic picture of the 
gas: remember the molecules have about a thousand times more room than they do in the 
liquid state, so the molecules go (relatively) a long way between collisions.  We shall 
examine this kinetic picture of a gas in much more detail later in the course, but for now 
we’ll make the simplifying assumption that the molecules all have speed u, and travel a 
distance l between collisions. Actually this approximation gets us pretty close to the truth.   
 
We take the density of molecules to be n, the molecular mass m.  To begin thinking about 
x-direction momentum moving downwards, imagine some plane parallel to the plates and 
between them.  Molecules from above are shooting through this plane and colliding with 
molecules in the slower moving gas below, on average transferring a little extra 
momentum in the x-direction to the slower stream.  At the same time, some molecules 
from the slower stream are shooting upwards and will slow down the faster stream.  
 
Let’s consider first the molecules passing through the imaginary plane from above: we’re 
only interested in the molecules already moving downwards, that’s half of them, so a 
molecular density of n/2.   If we assume for simplicity that all the molecules move at the 
same speed u, then the average downward speed of these molecules / 2zu u=  
( cozu u sθ= , and the average value of cosθ  over all downward pointing directions is 
½.)  
 

u  
vx(z+Δz)    “fast”  

z  

Imaginary plane 

Downward moving molecules 
uz  

vx(z)    “slow” 

Δvx  

 
 

Thus the number of molecules per second passing through the plane from above is 
 

 
2 4z
n nu =

u  

 
and the same number are of course coming up from below! (Not shown.)  (To see what’s 
going on, the mean free path shown here is hugely exaggerated compared with the 
distance between the plates, of course.) 
 
But this isn’t quite what we want: we need to know how efficiently these molecules 
crossing the plane are transferring momentum for the fast moving streams above to the 
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slower ones below.  Consider one particular molecule going from the faster stream at 
some downward angle into the slower stream.   
 
Let us assume it travels a distance l from its last collision in the “fast” stream to its first in 
the “slow” stream.  The average distance between collisions is called the mean free path, 
here “mean” is used in the sense of “average”, and is denoted by l.  We are simplifying 
slightly by taking all distances between collisions to be l, so we don’t bother with 
statistical averaging of the distance traveled. This does not make a big difference.  The 
distance traveled in the downward direction is /zz lu uΔ = , so the (x-direction) speed 
difference between the two streams is 
  

( ) 0 zdv z v luv z
dz d u

Δ = Δ = ⋅ . 

 
The molecule has mass m, so on average the momentum transferred from the fast stream 
to the slow stream is .  With our simplifying assumption that all molecules 
have the same speed u, all downward values of uz between 0 and u are equally likely, and 
the density of downward-moving molecules is n/2, so the rate of transfer of momentum 
by downward-moving molecules through the plane is 

p m vΔ = Δ

 
2

0

2 2
z

z
vun nmu m v l

u d
Δ = ⋅ ⋅ ⋅ . 

 
At the same time, molecules are moving upwards form the slower streams into the faster 
ones, and the calculation is exactly the same.  These two processes have the same sign: in 
the first case, the slower stream is gaining forward momentum from the faster, in the 
second, the faster stream is losing forward momentum, and in both cases total forward 
momentum is conserved.  Therefore, the two processes make the same contribution, and 
the total momentum flow rate (per unit area) across the plane is 
 

2
0 01momentum transfer rate   

3
z v vunm l nmlu

u d d
= ⋅ ⋅ ⋅ = ⋅  

 
using  2 2 / 3.zu u=
 
Evidently this rate of downward transfer of x-direction momentum doesn’t depend on 
what level between the plates we choose for our imaginary plane, it’s the same 
momentum flow all the way from the top plate to the bottom plate: so it’s simply the rate 
at which the moving top plate is supplying x-direction momentum to the fluid,  
 

0momentum supply rate  / / .F A v dη= =  
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Since the momentum supplied moves steadily downwards through the fluid, the supply 
rate is the transfer rate, the two equations above are for the same thing, and we deduce 
that the coefficient of viscosity  
 

1 .
3

nmluη =  

 
In deriving this formula, we did make the simplifying assumption that all the molecules 
move at the same speed, but in fact the result is very close to correct for the more general 
case. 

*Why Doesn’t the Viscosity of a Gas Depend on Density?  
Imagine we have a gas made up of equal numbers of red and green molecules, which 
have the same size, mass, etc. One of the molecules traveling through will on average 
have half its collisions with red molecules, half with green.  If now all the red molecules 
suddenly disappear, the collision rate for our wandering molecule will be halved.  This 
means its mean free path l will double.  So, since the coefficient of viscosity  

1
3 ,nmluη = halving the gas number density n at the same time doubles the mean free path 

l, so η  is unchanged. (η does finally begin to drop when there is so little gas left that the 
mean free path is of order the size of the container.) 
 
Another way to see this is to think about the molecules shooting down from the faster 
stream into slower streams in the two-plate scenario.  If the density is halved, there will 
only be half the molecules moving down, but each will deliver the x-momentum 
difference twice as far—the further they go, the bigger the x-velocity difference between 
where they begin and where they end, and the more effective they are in transporting x-
momentum downwards. 

*Comparing the Viscosity Formula with Experiment 
We’ll repeat the earlier table here for convenience: 
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Gas Viscosity in 10-6 

Pa.s 
Air at 100K 7.1 
Air at 300K 18.6 
Air at 400K 23.1 
Hydrogen at 
300K 

9.0 

Helium at 
300K 

20.0 

Oxygen at 
300K 

20.8 

Nitrogen at 
300K 

17.9 

Xenon at 
300K 

23.2 

These values are from the CRC Handbook, 85th Edition, 6-201. 
 
It’s easy to see one reason why the viscosity increases with temperature:  from 

 ( )1/ 3 ,nmluη = η  is proportional to the average molecular speed u, and since this 

depends on temperature as 2 31
2 2 Bmu k T=  (if this is unfamiliar, be assured we’ll be 

discussing it in detail later), this factor contributes a T  dependence.  In fact, though, 
from the table above, the increase in viscosity with temperature is more rapid than T .  
We know the density and mass remain constant (we’re far from relativistic energies!) so 
if the analysis is correct, the mean free path must also be increasing with temperature.  In 
fact this is what happens—many of the changes of molecular direction in flight are not 
caused by hard collisions with other molecules, but by longer range attractive forces (van 
der Waals forces) when one molecule simply passes reasonably close to another.  Now  
these attractive forces obviously act for a shorter time on a faster molecule, so it is 
deflected less.  This means that as temperature and molecular speed increase, the 
molecules get further in approximately the same direction, and therefore transport 
momentum more effectively.  
 
Comparing viscosities of different gases, at the same temperature and pressure they will 
have the same number density n.  (Recall that a mole of any gas has Avogadro’s number 
of molecules, 6x1023, and that at standard temperature and pressure this occupies 22.4 
liters, for any gas, if tiny pressure and volume corrections for molecular attraction and 
molecular volume are ignored.)  The molecules will also have the same kinetic energy 
since they’re at the same temperature (see previous paragraph). 
 
Comparing hydrogen with oxygen, for example, the molecular mass m is up by a factor 
16 but the velocity u decreases by a factor 4 (since the molecular kinetic energies ½mv2 
are the same at the same temperature).  In fact (see the table above), the viscosity of 
oxygen is only twice that of hydrogen, so from 1

3 nmluη = we conclude that the hydrogen 
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molecule has twice the mean free path distance l between collisions—not surprising since 
it is smaller.  Also, helium must have an even longer mean free path, again not surprising 
for the smallest molecule in existence.  The quite large difference between nitrogen and 
oxygen, next to each other in the periodic table, is because N2 has a trivalent bonding, 
tighter than the divalent O2 bonding, and in fact the internuclear distance in the N2 
molecule is 10% less than in O2.  Xenon is heavy (atomic weight 131), but its mean free 
path is shorter than the others because the atom is substantially larger, and so an easier 
target.    
 
Historically, the sizes of many atoms and molecules were first estimated from viscosity 
measurements using this method.  In fact, just such a table of atomic and molecular 
diameters, calculated on the assumption that the atoms or molecules are hard spheres, can 
be found in the CRC tables, 85th edition, 6-47.  But the true picture is more complicated:   
the atoms are not just hard spheres, as mentioned earlier they have van der Waals 
attractive forces between them, beyond the outermost shell.  Actually, the electronic 
densities of atoms and molecules can now be found fairly precisely by quantum 
calculations using self-consistent field methods, and the resulting “radii” are in rough 
agreement with those deduced from viscosity (there is no obvious natural definition of 
radius for the electron cloud).   

More General Laminar Flow Velocity Distributions 
We’ve analyzed a particularly simple case: for the fluid between two parallel plates, the 
bottom plate at rest and the top moving at steady speed v0, the fluid stream velocity 
increases linearly from zero at the bottom to v0 at the top.  For more realistic laminar flow 
situations, such as that away from the banks in a wide river, or flow down a pipe, the rate 
of velocity increase on going from the fixed boundary (river bed or pipe surface) into the 
fluid is no longer linear, that is, ( ) /dv z dz  is not the same everywhere.  
 
The key to analyzing these more general laminar flow patterns is to find the forces acting 
on a small area of one of the “sheets”.  (Or a larger area of sheet if the flow is uniform in 
the appropriate direction.)  There will be external forces such as gravity or pressure 
maintaining the flow, which must balance the viscous drag forces exerted by neighboring 
sheets if the fluid is not accelerating.  The sheet-sheet drag force is equivalent to the force 

0/F A v d/η= exerted by the top “sheet” of fluid on the top plate in the previous 
discussion, except that now the forces are within the fluid.  As we discussed earlier, the 
drag force on the top plate comes from molecules close to the plate bouncing off, gaining 
momentum, which is subsequently transferred to other molecules a little further away.  
For liquids, this mechanism involves distances of order a few molecular diameters, for 
gases a few mean free paths.  In either case, the distances are tiny on a macroscopic scale.  
This means that the appropriate formula for the drag force on a plate, or that between one 
sheet of fluid on another, is 

 ( ) .
dv zF

A dz
η=  

 
The rate of change of stream velocity close to the interface determines the drag force. 
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We shall show in the next lecture how this formula can be used to determine the flow 
pattern in a river, and that in a circular pipe. 
 

Calculating Viscous Flow: Velocity Profiles in Rivers and 
Pipes 
 
We present the calculus derivation of the smooth flow patterns for a wide river and for 
fluid in a circular cross-section pipe, and find the total flow for given slope or pressure 
drop. 

Introduction 
In this lecture, we’ll derive the velocity distribution for two examples of laminar flow.  
First we’ll consider a wide river, by which we mean wide compared with its depth (which 
we take to be uniform) and we ignore the more complicated flow pattern near the banks. 
Our second example is smooth flow down a circular pipe.  For the wide river, the water 
flow can be thought of as being in horizontal “sheets”, so all the water at the same depth 
is moving at the same velocity.  As mentioned in the last lecture, the flow can be pictured 
as like a pile of printer paper left on a sloping desk: it all slides down, assume the bottom 
sheet stays stuck to the desk, each other sheet moves downhill a little faster than the sheet 
immediately beneath it.  For flow down a circular pipe, the laminar “sheets” are hollow 
tubes centered on the line down the middle of the pipe. The fastest flowing fluid is right 
at that central line.  For both river and tube flow, the drag force between adjacent small 
elements of neighboring sheets is given by force per unit area 
 

( )dv zF
A dz

η=  

 
where now the z-direction means perpendicular to the small element of sheet. 

A Flowing River: Finding the Velocity Profile 
For a river flowing steadily down a gentle incline under gravity, we’ll assume all the 
streamlines point in the same direction, the river is wide and of uniform depth, and the 
depth is much smaller than the width.  This means almost all the flow is well away from 
the edges (the river banks), so we’ll ignore the slowing down there, and just analyze the 
flow rate per meter of river width, taking it to be uniform across the river. 
 
The simplest basic question is: given the slope of the land and the depth of the river, what 
is the total flow rate? 
 
To answer, we need to find the speed of flow v(z) as a function of depth (we know the 
water in contact with the river bed isn’t flowing at all), and then add the flow 
contributions from the different depths (this will be an integral) to find the total flow.  
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The function v(z) is  called the “velocity profile”.  We’ll prove it looks something like 
this: 

Stream velocity v(z) 
at different depths 

 
(For a smoothly flowing river, the downhill ground slope would be imperceptible on this 
scale.) 
 
But how do we begin to calculate v(z)?   
 
Recall that (in an earlier lecture) to find how hydrostatic pressure varied with depth, we 
mentally separated a cylinder of fluid from its surroundings, and applied Newton’s Laws: 
it wasn’t moving, so we figured its weight had to be balanced by the sum of the pressure 
forces it experienced from the rest of the fluid surrounding it.  In fact, its weight was 
balanced by the difference between the pressure underneath and that on top.   
 
Taking a cue from that, here we isolate mentally a thin layer of the river, like one of those 
sheets of printer paper, lying between height z above the bed and .z z+ Δ   This layer is 
moving, but at a steady speed, so the total force on it will still be zero.  Like the whole 
river, this layer isn’t quite horizontal, its weight has a small but nonzero component 
dragging it downhill, and this weight component is balanced by the difference between 
the viscous force from the faster water above and that from slower water below. 
 
Bear in mind that the diagram below is at a tiny angle θ  to the horizontal: 
 

Backward viscous drag from fluid below 

mgsinθ  downhill 

Forward viscous drag from fluid above 
z + Δz 
z 

 
Obviously, for the forces to balance, the backward drag on the thin layer from the slower 
moving water beneath has to be stronger than the forward drag from the faster water 
above, so the rate of change of speed with height above the river bed is decreasing on 
going up from the bed.   
 
Let us find the total force (which must be zero) on one square meter of the thin layer of 
water between heights z and :  z z+ Δ
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First, gravity:  if the river is flowing downhill at some small angle θ , this square meter of 
the layer (volume , density 2 m 1 m  mz zΔ × = Δ 3 ρ ) experiences a gravitational force 

sinmg g zθ ρ≈ Δ ⋅θ  tugging it downstream (taking the small angle approximation, 
sinθ θ= .)   
 
Next, the viscous drag forces:  the square meter of layer experiences two viscous forces, 
one from the slower water below, equal to ( ) /dv z dzη , tending to slow it down, one from 

the faster water above it, , tending to speed it up. ( ) /dv z z dzη +Δ
 

Gravity must balance out the difference between the two viscous forces: 
 

( ) ( ) 0d dg z v z z v z
dz dz

ρ θ η ηΔ + + Δ − =  

 
We can already see from this equation that, unlike the fluid between the plates, v(z) can’t 
possibly be linear in z—the equation would not balance if   were the same at z and /dv dz

z z+ Δ !  
 

Dividing throughout by η  and by zΔ ,  
 

( ) ( )
.

d dv z z v z gdz dz
z

ρ θ
η

+ Δ −
= −

Δ
 

 
Taking now the limit  and recalling the definition of the differential 0,zΔ →

 
( ) ( ) ( )

0
lim
x

df x f x x f x
dx xΔ →

+ Δ −
=

Δ
 

  
we find the differential equation 

( )2

2 .
d v z g

dz
ρ θ
η

= −  

 
 The solution of this equation is easy: 
 

( ) 2

2
gv z z Cz Dρ θ
η

= − + +  

 
with C, D constants of integration.   
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Remember that the velocity v(z) is zero at the bottom of the river, z = 0, so the constant D 
must be zero, and can be dropped immediately.  But we’re not through—we haven’t 
found C.  To do that, we need to go to the top. 

Velocity Profile Near the River Surface 
What happens to the thin layer of river water at the very top—the layer in contact with 
the air?  Assuming there is negligible wind, there is essentially zero parallel-to-the-
surface force from above.   
 
So the balance of forces equation for the top layer is just 
 

( ) 0dg z v z
dz

ρ θ ηΔ − = . 

 
We can take this top layer to be as thin as we like, so let’s look what happens in the limit 
of extreme thinness, .  The term 0zΔ → g zρ θΔ then goes to zero, so the other term must 
as well.  Since η  is constant, this means 

( ) 0 at the surface .d v z z h
dz

= =  

 
So the velocity profile function ( )v z has zero slope at the river surface.  
 
With this new information, we can finally fix the arbitrary integration constant C. 
 
Now the velocity profile 

( ) 2

2
gv z z Czρ θ
η

= − + , 

so   
( )dv z g z C

dz
ρ θ
η

= − + , 

 

and ( ) 0 d v z h
dz

= = gives g hC ρ θ
η

= . 

 
Putting this value for C into v(z) we have the final result: 

 

( ) ( )2
2
gv z z h zρ θ
η

= − . 

 
This velocity profile v(z) is half the top part of a parabola: 
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Total River Flow 
Knowing the velocity profile v(z) enables us to compute the total flow of water in the 
river.  As explained earlier, we’re assuming a wide river having uniform depth, ignoring 
the slowdown near the edges of the river, taking the same v(z) all the way across.  We’ll 
calculate the flow across one meter of width of the river, so the total flow is our result 
multiplied by the river’s width.    
 
The flow contribution from a single layer of thickness zΔ  at height z is ( )v z zΔ  cubic 
meters per second across one meter of width.  The total flow is the sum over all layers.  
In the limit of many infinitely thin layers, that is, 0zΔ → , the sum becomes an integral, 
and the total flow rate 
 

3

0 0

( ) ( / 2 ) (2 ) ( / 3 )
h h

I v z dz g z h z dz g hρ θ η ρ θ η= = − =∫ ∫  

 
in cubic meters per second per meter of width of the river.  

 
It is worth thinking about what this result means physically. The interesting part is that 

the flow is proportional to h3, where h is the depth of the river.  So, if there’s a storm and 
the river is twice as deep as normal, and flowing steadily, the flow rate will be eight 

times normal.  
 

Exercise: plot on a graph the velocity profiles for two rivers, one of depth h and one 2h, 
having the same values of , ,  and .gρ θ η   What is the ratio of the surface velocities of the 

two rivers? Suppose that one meter below the surface of one of the rivers, the water is 
flowing 0.5 m.sec-1 slower than it is flowing at the surface.  Would that also be true of the 

other river? 

Flow down a Circular Tube (Poiseuille Flow) 
The flow rate for smooth flow through a pipe of circular cross-section can be found by 
essentially the same method.  (This was the flow pattern analyzed by Poiseuille and used 
by him to confirm Newton’s postulate of fluid flow behavior being governed by a 
coefficient of viscosity.)   
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In the pipe, the flow is fastest in the middle, and the water in contact with the pipe wall 
(like that at the river bed) doesn’t flow at all.  The river’s flow pattern was most naturally 
analyzed by thinking of flat layers of water, all the water in one layer having the same 
speed.  What would be the corresponding picture for flow down a pipe?  Here all the fluid 
at the same distance from the center moves down the pipe at the same speed—instead of 
flat layers of fluid, we have concentric hollow cylinders of fluid, one inside the next, with 
a tiny rod of the fastest fluid right at the center. This is again laminar flow, even though 
this time the “sheets” are rolled into tubes.  The blue circular area on the cross-section of 
the pipe shown below represents one of these cylinders of fluid—all the fluid between r 
and from the central line.  r + Δr
 
Each of these hollow cylinders of water is pushed along the pipe by the pressure 
difference between the ends of the pipe. Each feels viscous forces from its two 
neighboring cylinders: the next bigger one, which surrounds it, tending to slow it down, 
but the next smaller one (inside it) tending to speed it up.  Writing down the differential 
equation is a little more tricky that for the river, because we must take into account that 
the two surfaces of the hollow cylinder (inside and outside) have different areas, 2 rLπ  
and .  It turns out that the velocity profile is again parabolic: the details are 
given below. 

( )2 r rπ + Δ L

 

a 

Velocity profile for laminar 
flow down a circular pipe 

  
 

Circular Pipe Flow: Mathematical Details  
Suppose the pipe has radius a, length L and pressure drop ,PΔ  
 

pressure drop per meter / .P L= Δ  
 
Let us focus on the fluid in the cylinder between r and r r+ Δ from the line down the 
middle, and we’ll take the cylinder to have unit length, for convenience.  
 
The pressure force maintaining the fluid motion is the difference between pressure x area 
for the two ends of this one meter long hollow cylinder: 
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net pressure force 2 .P r r
L

πΔ
= ⋅ Δ  

 
(We’re assuming , since we’ll be taking the rΔ r 0rΔ →  limit, so the end area 

2 r r.π≅ Δ   The equality becomes exact in the limit.) 
 
This force exactly balances the difference between the outer surface viscous drag force 
from the slower surrounding fluid and the inner viscous force from the central faster-
moving fluid, very similar to the situation in the previous analysis of river flow.  
 
Using and remembering that the inner and outer surfaces of the 
cylinder have slightly different areas, the force equation is: 

( )/F A dv z dzη= / ,

 

( ) ( ) ( )2 2 2
dv r r dv rP r r r r r

L dr
π π η π η

+ ΔΔ
⋅ Δ = + Δ − .

dr
 

Rearranging, 

( ) ( ) ( )dv r r dv r
r r rP dr drr

L r
d dvr
dr dr

η η

η

+ Δ
+ Δ −Δ

⋅ =
Δ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
in the limit , remembering the definition of the differential (see the similar 
analysis above for the river).  

0rΔ →

 
This can now be integrated to give 

2

2
dv P rr C
dr Lη

Δ
= ⋅ +  

 
where C is a constant of integration.  Dividing both sides by r and integrating again 
 

( )
2

ln .
4

P rv r C r D
Lη

Δ
= ⋅ + +  

 
The constant C must be zero, since physically the fluid velocity is finite at r = 0.  The 

constant D is determined by the requirement that the fluid speed is zero where the fluid is 
in contact with the tube, at r = a.  

 
The fluid velocity is therefore 
 

( ) ( )2 2

.
4

a rPv r
Lη

−Δ
= ⋅  
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To find the total flow rate I down the pipe, we integrate over the flow in each hollow 
cylinder of water: 

( ) ( )2 3
4

0 0

2 2
4 8

a a a r rP PI rv r dr dr a
L L

ππ π
η η

−Δ Δ
= = ⋅ =∫ ∫ ⋅  

 
in cubic meters per second. 
 
Notice the flow rate goes as the fourth power of the radius, so doubling the radius results 
in a sixteen-fold increase in flow.  That is why narrowing of arteries is so serious.  

 

Using Dimensions 
M, L and T: all physics equations must have the same dimensions on both sides.  This can 
be exploited to arrive at some interesting predictions without doing much math—for 
example, that the smooth flow rate through a circular pipe goes as the fourth power of 
the radius. 
 
Some of the most interesting results of hydrodynamics, such as the sixteen-fold increase 
in flow down a pipe on doubling the radius, can actually be found without doing any 
calculations, just from dimensional considerations. 
 
We symbolize the “dimensions” mass, length and time by M, L, T.  We then write the 
dimensions of other physical quantities in terms of these.  For example, velocity has 
dimensions , and acceleration 1LT − 2.LT −  
 
We shall use square brackets [] to denote the dimensions of a quantity, for example, for 
velocity, we write [ ] 1.v LT −=   Force must have the same dimensions as mass times 

acceleration, so        [ ] 2.F MLT −=   This “dimensional” notation does not depend on the 
units we use to measure mass, length and time.   
 

All equations in physics must have the same dimensions on both sides. 
 
We can see from the equation defining the coefficient of viscosity ,η   0/ /F A v dη= , 
(the left hand side is force per unit area, the right hand v0/d is the velocity gradient) that 
  

[ ] [ ] [ ]( ) [ ] [ ] ( )2 2 1 1 1/ / / /F A d v MLT L L LT ML Tη .− − −= ⋅ = ⋅ = −  
 
How can thinking dimensionally help us find the flow rate I through a pipe?  Well, the 
flow itself, say in cubic meters per second, has dimensions [ ] 3 1.I M T −=   What can this 
flow depend on?  
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The physics of the problem is that the pressure difference PΔ  between the ends of the 
pipe of length L is doing work overcoming the viscous force. The only parameters 
determining the flow are therefore: the pressure gradient, /P LΔ , the viscosity ,η  and 
the radius of pipe cross section a.  Note here that we are assuming the flow is steady—no 
acceleration—so the mass, or more precisely density, of the fluid plays no part.  Of 
course, if the flow is downward, the density has an indirect role in that the weight of the 
fluid generates the pressure gradient, but we’ve already included the pressure as a 
parameter.  
 
Therefore,  

( )Flow / , ,I f P L aη= Δ  
 

where f is some function we don’t know, but we do know that the two sides of this 
equation must match dimensionally, so f must have the same dimensions as I, that is, 

 3 1.L T −

 
Now , a pressure, has dimensions PΔ [ ] [ ] 2 2/F A MLT L− −=  so /P LΔ  has dimensions 

2 2.ML T− −    
 
The other variables in f have dimensions [ ] 1 1ML Tη − −=  (from above) and [a] = L.   
 
The game is to put these three variables (or powers of them) together to give a function f 
having the dimensions of flow, that is, 3 1L T − , otherwise the above equation must be 
invalid.   
 
The first thing to notice is that there is no M  term in flow, and none in a either, so  
and 

/P LΔ
η  must appear in the equation in such a way that their M terms cancel, that is, one 

divides the other.   
 
We know of course that increased pressure increases the flow, so they must appear in the 
combination /P LηΔ .  This gets rid of M.  The next task is to put this combination, which 
has itself dimensions 2 2 1 1 1 1/ ,MLT L ML T L T− − − − − −=  together with [a] = L, to get a 
quantity with the dimensions of flow, 3 1.L T −   The unique choice is to multiply /P LηΔ by 
a4. 
 
We therefore conclude that the flow rate through a circular pipe must be given by: 

 
( ) 4/ .I C P L aη= Δ  

 
This is certainly much easier than solving the differential equation and integrating to find 
the flow rate!  The catch is the unknown constant C in the equation—we can’t find that 
without doing the hard work. However, we have established from this dimensional 
argument that the flow rate increases by a factor of 16 when the radius is doubled. 
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It should be noted that this conclusion does depend on the validity of the assumptions 
made—in particular, that the flow is uniform and in straight streamlines.  At sufficiently 
high pressure, the flow becomes turbulent.  When this happens, the pressure causes the 
fluid to bounce around inside the pipe, and the flow pattern will then depend also on the 
density of the fluid, which was irrelevant for the slow laminar flow, and the reasoning 
above will be invalid.   
 
Exercise:  derive the depth dependence of the steady flow of a wide river under gravity.       
(Note: The appropriate flow rate is cubic meters per second per meter of width of the 
river.) 
 
So dimensional analysis cannot give overall dimensionless constants, but can predict how 
flow will change when a physical parameter, such as the pressure or the size of the pipe, 
is altered.  We’ve shown above how it rather easily gives a nonobvious result, the a4 
dependence of flow on radius, which we found earlier with a good deal of work.  But as 
we shall see, dimensional analysis can also illuminate the essential physics of flow 
problems where exact mathematical analysis is far more difficult, such as Stokes’ Law in 
the next lecture, and help us understand how the nature of fluid flow changes at high 
speeds. 
 

Dropping the Ball (Slowly) 
Dropping a small ball through a very viscous fluid: a dimensional prediction of the 
dependence of speed on radius, and an experiment with glycerin. 

Stokes’ Law 
We’ve seen how viscosity acts as a frictional brake on the rate at which water flows 
through a pipe, let us now examine its frictional effect on an object falling through a 
viscous medium.  To make it simple, we take a sphere.  If we use a very viscous liquid, 
such as glycerin, and a small sphere, for example a ball bearing of radius a millimeter or 
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so, it turns out experimentally that the liquid flows smoothly around the ball as it falls, 

with a flow pattern like:  
 
(The arrows show the fluid flow as seen by the ball.  This smooth flow only takes place 
for fairly slow motion, as we shall see.) 
 
If we knew mathematically precisely how the velocity in this flow pattern varied near the 
ball, we could find the total viscous force on the ball by finding the velocity gradient near 
each little area of the ball’s surface, and doing an integral.  But actually this is quite 
difficult.  It was done in the 1840’s by Sir George Gabriel Stokes.  He found what has 
become known as Stokes’ Law: the drag force F on a sphere of  radius a moving through 
a fluid of viscosity η  at speed v is given by: 

6 .F a vπ η=  
 
Note that this drag force is directly proportional to the radius.  That’s not obvious—one 
might have thought it would be proportional to the cross-section area, which would go as 
the square of the radius.  The drag force is also directly proportional to the speed, not, for 
example to v2.   

Understanding Stokes’ Law with Dimensional Analysis  
Is there some way we could see the drag force must be proportional to the radius, and to 
the speed, without wading through all of Sir George’s mathematics?  The answer is yes—
by using dimensions.   
 
First we must ask: what can this drag force depend on?   
 
Obviously, it depends on the size of the ball:  let’s say the radius is a, having dimension 
L.   
 
It must depend on the speed v, which has dimension 1.LT −    
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Finally, it depends on the coefficient of viscosity η  which has dimensions ML-1T-1.   
 
The drag force F has dimensions [ ] 2F MLT −= :  what combination of [ ] [ ] 1,a L v LT −= =  

and [ ] 1 1ML Tη − −=  will give [ ] 2F MLT −= ?  
 
It’s easy to see immediately that F must depend linearly on η , that’s the only way to 
balance the M term.   
 
Now let’s look at /F η , which can only depend on a and v.  [ ] 2 1/F L Tη −= .   The only 

possible way to get a function of a, v having dimension 2 1L T −  is to take the product av. 
 
So, the dimensional analysis establishes that the drag force is given by: 
 

F Ca vη=  
 
where C is a constant that cannot be determined by dimensional considerations.  
 

Experimental Check 
We can check this result by dropping small steel balls through glycerin. We choose 
glycerin because it has a very high viscosity, so the balls fall slowly enough for us to be 
able to time them.   
 
One problem is that the viscosity of glycerin is very temperature dependent, being 1.49 
Pa.sec at 20oC, and 0.95 Pa.sec at 25oC.  We measured the temperature of our glycerin to 
be 23oC, so we assumed its viscosity was 1.17 Pa.sec., just taking a linear interpolation.  
We used a ball of radius 1.2mm, weighing 0.05 grams.  On dropping it through the 
glycerin, and allowing some distance for it to reach a steady speed, we found it fell 25cm. 
in 11.1 seconds, a speed of 0.022 m sec-1.  (I got these numbers in a trial run preparing for 
class.)  So the drag force should be: 
 

3 26 18.8 1.2 10 1.17 2.2 10 6 10 N.F a vπ η − −= ≅ × × × × × ≅ × 4−  
 
If the ball is dropping at a steady speed, this force should just balance the weight of the 
ball.  The mass is 0.05grams, which is 5.10-4 N.  But we should also have subtracted off a 
buoyancy force, which would get this closer to 4.10-4 N.  Since we think our 
measurements of radius, mass and speed were fairly accurate, the viscosity was evidently 
less than we thought.  Bearing in mind that it drops by 10% for each one-degree rise in 
temperature, most likely it was not at a uniform temperature, or our measurement of 
temperature was inaccurate.  
 
We checked the dimensional prediction by dropping a ball of exactly twice the radius. It 
fell in exactly one-quarter of the time.   
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This confirms the correctness of the dimensional analysis, because once the ball has 
reached terminal velocity vterm, and therefore is no longer accelerating, it must feel zero 
net force.  At this stage, the forces of viscous drag and weight must be in balance: 
  

( ) 3
term 4 / 3 .Ca v a gη π ρ=  

 
It follows that for two balls of the same density ρ , after canceling a from each side, the 
ratio of their terminal velocities is the square of the ratio of their radii, a ball with radius 
2a will fall four times faster than a ball with radius a.  This is what we found 
experimentally.  
 
Exercise: Assuming the flow pattern in the diagram above has the same proportions for 
different radii (so for a larger radius ball it’s the same pattern magnified), how does the 
fluid velocity gradient near the “equator” of the ball change on going from a ball of 
radius a to one of radius 2a?  (Assume the two balls are falling through the fluid at the 
same speed.)  Argue that most of the viscous drag on the sphere takes place in a band 
surrounding the equator (so, a band shaped like the tropical zone on the earth).  From 
this, make plausible that the total viscous drag will be proportional to the sphere’s radius, 
not to the square of the radius.  

Stokes’ Law and the Coffee Filters 
Another experiment, this time dropping coffee filters through air, with a very different 
result—but also predicted dimensionally!  The Reynolds number: the dimensionless ratio 
of inertial drag to viscous drag. 

A Problem 
We found that Stokes’ Law, which we derived in the form  
 

dragF Ca vη=  
 
from purely dimensional considerations (Stokes did the hard part of proving that 6C π= ) 
correctly predicted that for two small steel balls, one having a radius exactly twice the 
other, the bigger one would fall through a fluid four times faster (it had eight times the 
weight, and twice the drag force for the same velocity, and the drag force is proportional 
to the velocity).  
 
Now let us ask what Stokes’ Law predicts for the following coffee filter experiment:  
 
If we drop a single coffee filter, it reaches a terminal velocity of about 0.8 meters per sec 
after falling less than a meter.  If we drop a stack of four close packed filters, the terminal 
velocity clocks in at about 1.6 meters per sec.  
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That is to say, the stack of four filters has a terminal velocity twice that of a single filter.  
Now at terminal velocity the drag force is exactly balancing the weight of the object 
falling.  The stack of four filters is almost indistinguishable in shape and size from the 
single filter, so it’s difficult to believe there’s any significant difference in the air flow 
pattern round the falling filters for the same speed.  Therefore the Stokes’ drag from the 
air friction should be the same Ca vη  for both.  (We can’t say 6C π= , that was derived 
for a falling sphere, but the dimensional argument should still be working.)  Yet this 
implies that the terminal velocity of the stack of four filters should be four times the 
terminal velocity of the single filter!   
 
What is wrong with our dimensional analysis?  It worked brilliantly for the little steel 
balls, but seems to have flunked the coffee filter test. In what respect are these two 
experiments different? 

Another Kind of Drag Force 
Perhaps the best way to see what is wrong is to do the steel ball experiment on a 
completely different scale.  Let us imagine dropping a cannonball from an airplane.  This 
will also reach a terminal velocity, but at hundreds of miles an hour.  However, in 
contrast to the steel balls in glycerin experiment, it turns out that this time the viscous 
drag is not the important effect.  At high speeds, most of the work done by the falling body 
is in just pushing the air out of the way. 
 
Let us estimate how much force the cannonball exerts on the air pushing it out of its path. 
Suppose the cannonball is falling at steady speed v, and it has radius a. Then it has to 
move aside a volume  of air per second, and this air will be moved at a speed of 
order of magnitude v. Therefore, the rate at which the cannonball imparts momentum to 
the air (which was previously at rest) is of order  per second.  But the rate of 

2a vπ

2 2a vπρ
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change of momentum per second is just the force, so the cannonball is pushing the air 
with a force of order .  By Newton’s Third Law, Action = Reaction, this is also 
the drag force the cannonball experiences as it falls at v.  

2 2a vπρ

 
Exercise: Assuming the drag force depends only on v, a, and the density of air ρ, use a 
dimensional argument to show it must have this form.  

So What is the Real Drag Force? 
Using purely dimensional considerations, we have derived two quite different formulas 
for the drag force on a sphere falling through a fluid: 
 
Viscous drag force: 

viscousF Ca vη=  
and inertial drag force:  

2 2
inertial .F C aρ′= v

.

 
 
We call the second “inertial” because it arises from just pushing the still air out of the 
way, and would be the same if the air had no viscosity at all. 
 
The truth is that the two different derivations we have presented above for these two 
different drag forces are both too simple. In fact, in real situations, both types of forces 
are present.  This does not mean, though, that we can simply add the forces with suitable 
coefficients—the general situation is far more complicated.  However, it can be described 
mathematically by a complicated differential equation, the Navier-Stokes equation.  The 
good news is that the solutions to this equation for a given flow configuration, such as 
flow past a sphere, or flow past a wing, can be classified in terms of a single 
dimensionless parameter, the Reynolds number.  
 
 
The Reynolds number is just the ratio of the inertial drag to the viscous drag: 
 

R 2 /N a vρ η=  
 
The factor of 2 is the standard definition of the Reynolds number—this is just a matter of 
convention, it is of course not fixed by the dimensional arguments.  And the Reynolds 
number is dimensionless: it’s the ratio of two forces, so will be the same in any system of 
units! 
 
The theoretical prediction from the Navier-Stokes equation that the flow pattern in a 
given geometry depends only on the Reynolds number is well established experimentally, 
and makes it possible to find how air flows around an airplane in flight by testing a scale 
model in a wind tunnel, adjusting wind speed to get the same Reynolds number.  
 
Stokes’ Law for a falling sphere is found experimentally to be reasonably accurate for NR 
less than or of order 1.  
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Reference:  The derivation of Stokes’ Law (the 6π ) can be found, for example, in G. K. 
Batchelor,  An Introduction to Fluid Dynamics, Cambridge, 1967, 2000. 

Fluids Fact Sheet 
Pressure 
1 Pascal =  1 Newton/m2.  
1 atm. =  101.3 kPa = 1.013 bar = 760 mm Hg  (760 Torr) = 14.7 lb/in2.  

Some Densities 
Material Density in kg/m3 
Air at 760 mm, 0°C (STP) 1.29 
Air at 760 mm, 100°C 0.944 
Hydrogen (STP) 0.090 
Helium (STP) 0.179 
Water 1000 
Sea Water 1025 
Olive Oil 800 - 920 
Mercury 13600 
Aluminum 2700 
Iron 7860 
Silver  10500 
Gold 19300 

Some Viscosities: Liquids 
Fluid Viscosity in mPa.s 
Water at 0°C 1.79 
Water at 20°C 1.005 
Water at 100°C 0.28 
Glycerin  at 0°C 12070 
Glycerin  at 20°C 1410 
Glycerin  at 30°C 612 
Glycerin  at 100°C 14.8 
Mercury  at 20°C 1.55 
Mercury at 100°C 1.27 
Motor Oil SAE 30  200 
Motor Oil SAE 60 1000 
Ketchup 50,000 
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Some Viscosities: Gases 

 

 

 

 

 

 

 

Physics 152: Homework Problems on Fluids 

1.  Atmospheric pressure varies from day to day, but 1 atm is defined as 1.01 x 105 Pa.  
Calculate how far upwards such a pressure would force a column of water in a “water 
barometer”.  (That is, a long inverted glass tube, the top end sealed and having vacuum 
inside above the water surface, the bottom end immersed under water in a bowl of water, 
the other water surface in the bowl being open to the atmosphere.) 

 2.  The density of air at room temperature is about 1.29 kg/m3.  Use this together with the 
definition of 1 atm as 1.01 x 105 Pa.  to find the constant C in the Law of Atmospheres 

.  Use your result to estimate the atmospheric pressure on top of the Blue 
Ridge (say 4000 feet), Snowmass (11,000 feet) and Mount Everest (29,000 feet). 
( ) 0

CghP h P e−=

 3.  As a practical matter, how would you measure the density of air in a room?  Actually, 
Galileo did this in the early 1600’s. Can you figure out how he managed to do it?  (His 
result was off by a factor of two, but that was still pretty good!)  

 
4.  A ball is floating in water, exactly half submerged, as 
shown in the diagram.  Oil is now poured gently onto the 
water, so that it does not mix, but forms a layer above the 
water.  The oil completely covers the ball. Is the center of the 
ball now above, below or at the water-oil boundary? 
 
5. A weather balloon is made of latex, filled with helium (but 
not stretched) so that it can just lift an instrument package of 
10 kg., including the weight of the balloon.  
 
  (a) What is the volume of the balloon?  

Gas Viscosity in 10-6 Pa.s 
Air at 0°C 17.09 
Air at 20°C 18.08 
Air at 100°C 21.30 
Hydrogen at 0°C 8.4 
Helium at 0°C 18.6 
Xenon at 0°C 21.2 
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  (b) The balloon lifts the package to a height of 30 km.  Assume the balloon has stretched 
to a larger size, but is still intact.  Assume also (falsely!) that the air temperature is the 
same. How big is the balloon at 30 km.? 
 
   (c) How does the lifting capacity of the balloon at 30 km compare with that at ground 
level? 
 
 

6.  I make salad dressing in a conical bottle, 
wide at the base, steadily narrowing up to the 
neck. I pour in 100 cc of vinegar, then add 
100 cc of olive oil. The oil is a layer on top 
of the vinegar. Then I shake it vigorously, so 
the two liquids are completely mixed 
together.  

How (if at all) does the pressure on the 
bottom after shaking differ from the pressure 
on the bottom before shaking? 

7.  If an ice cube is floating in a glass filled to the brim with water, what happens to the 
water level as the ice cube melts? Would your answer be the same if the ice cube were 
stuck to the glass and fully submerged?  

8.  (a) State the Law of Atmospheres: the equation relating the density of air to height 
above the Earth’s surface.  (You don’t have to derive it, just state it.) 
 

0
CghP P e−=  

 
(b) Given that the density of the atmosphere at 3,500 meters is approximately 2/3 that at 
sea level, sketch a rough graph of density with height up to 14,000 meters.  (Take sea 
level density 1.3 kg/m3.) 
 
(c) In 1804, a French chemist, Gay-Lussac, went up in a balloon to about 7,000 meters to 
check the chemistry of the atmosphere.  The balloon was filled with hydrogen.  Make a 
very rough estimate of the size of the balloon. (Guess Gay-Lussac’s weight, assume the 
balloon weighed three times as much as he did.) 
 
9. A modern hot air balloon can weigh about 4 tons, fully loaded.  The maximum 
operating temperature for the enclosed hot air is 120 degrees C.  (Otherwise the nylon 
interior deteriorates rapidly.)  Assume the enclosed hot air is at 100 degrees, and the 
outside atmosphere is at zero  degrees.  If the balloon can just lift off, how big is it? 
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10. You have a solid metal cylinder, of height h, cross section area A, and density ρ , 
standing on its end on a table. What is the pressure on the table underneath the cylinder?  
Suppose you now heat the cylinder, and it expands by the same percentage in all 
directions (so the shape and proportions are unchanged), the height increasing to .  
What is the pressure on the table now? 

h h+Δ

 
11.  Assume you are walking around underwater, breathing through a flexible plastic 
tube, the other end held on the surface by some floating object.  The object is to estimate 
how far underwater it’s safe for you to go.   
 
(a)  Assume first you are out of the water, lying flat on your back, with a weight evenly 
distributed across your chest.  What weight would cause you difficulty in breathing?  
 
(b) Now, make a guess as to the area of your chest over the lungs, and deduce at what 
depth the water pressure on your chest would become dangerous. 
 
12.  Figure out what total area of one tire of your automobile is in contact with the road 
when the vehicle is parked on level ground.  
 
13.  What is the approximate pressure your shoes exert on the ground when you’re 
standing still? Give a ballpark estimate for the pressure exerted by a woman balancing on 
one high heel. 

 
14. A beaker containing water is placed on a spring 
scale as shown.  Next, a cork of mass 10 grams, and 
density 200 kg/m3, is gently floated on the water, not 
touching the sides of the container.  
 
   (a) How does that change the scale reading? 
 
   (b) A thin rod, of negligible volume, is now used to 
push the cork underwater, again without it touching the 
container?  Does that change the scale reading?  
Explain your reasoning.  
 
  (c) What if the cork is held underwater by a thin 
string attached to a small hook in the middle of the 
base of the container?  What does the scale read in that 
case? Does the tension in the string play a role? 
 
15.  In a car going down a highway at a steady 
velocity, a child has a helium-filled balloon on a string, 

the balloon is at rest directly above the child, not touching the roof of the car.  Now the 
driver accelerates.  How does the balloon move?  Explain your reasoning. 
 
16.  (a) Explain how a nonvertical jet can keep a beach ball in the air. 
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     (b)  Write down your best guesses for the weight and size of the (very light!) beach 
ball, etc., then use them to make a ballpark estimate of the speed of the air in the jet 
holding the ball up.   
  
 

17.  In the flow meter 
shown, air flows from a 
pipe of cross sectional 
area 10 sq cm into one of 
cross sectional area 40 sq 
cm.  The manometer 
contains water, the height 
difference between the 
two arms is 5 cm.  What is 
the rate of air flow? 

gas flow 

 
 
18.  A large beer keg of 
height H and cross-section 
area A1 is filled with beer.  
The top is open to 
atmospheric pressure. At 
the bottom is a spigot 
opening of area A2, which 
is much smaller than A1.  
 
(a)  Show that when the 
height of the beer is h, the 
speed of the beer leaving 
the spigot is 
approximately √(2gh). 

A Venturi flow meter is a manometer with the two 
arms connected to places in the flow tube having 
different cross sections. The fluid flow rate can be 
figured from the pressure difference registered.  

 
(b)  Show that for the 
approximation A2 <<A1, 

the rate of change of the height h of the beer is given by 
1/ 22

1
(2 )Adh gh

dt A
= −  

 
(c)  Find h as a function of time if h = H at t = 0.  
 
(d)  Find the total time needed to drain the keg if H = 2 m, A1 = 0.8 m2, and A2 = (10-4)A1.  
 
 
19.  (a) Write down the equation that defines the coefficient of viscosity η.   
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(b)   By balancing dimensions on both sides of your equation, find the dimensions 
M?L?T? of η. 
 
(c)   What are the dimensions of flow rate of blood through an artery? 
 
(d)  What are the dimensions of the pressure gradient (pressure drop per unit length) in an 
artery? 
 
(e)  Assuming that the blood flow rate depends only on the pressure gradient, the 
viscosity and the radius R of the artery, give a proof using dimensions, and showing all 
your steps, that the flow rate is proportional to R4.   
 
(f)  If plaque build up in an artery reduces its radius by 10%, estimate how much the 
blood flow is reduced if the blood pressure stays the same.  
 
 
20.  A simple hot tub has vertical sides, water depth one meter and area 4 square meters. 
It has a drain at the bottom, a circular opening of radius 3 cm.  When the plug is pulled, it 
drains gravitationally (no pump). 
 
   (a) What is the speed of water flow through the circular opening right after the plug is 
pulled?  (Ignore viscosity: assume the water is flowing at this same speed over the whole 
area of the opening.)  
   (b) At what speed is the water level in the tub dropping right after the plug is pulled? 
   (c) How quickly is the level in the tub dropping when the tub is half empty? 
   (d)  How long does it take for the tub to empty completely?  
21.  Suppose a mass m of fluid moving at v1 in the x-direction mixes with a mass m 
moving at v2 in the x-direction.  Momentum conservation tells us that the mixed mass 2m 
moves at ½( v1 + v2).  Prove that the total kinetic energy has decreased if v1, v2 are 
unequal. 

22. Using only dimensional arguments, derive the depth dependence of the steady flow of 
a wide river under gravity. (Note: The appropriate flow rate is cubic meters per second 
per meter of width of the river.) 

23.  Plot on a graph the velocity profiles for two rivers, one of depth h and one 2h, having 
the same values of , ,  and .gρ θ η   What is the ratio of the surface velocities of the two 
rivers? Suppose that one meter below the surface of one of the rivers, the water is flowing 
0.5 m.sec-1 slower than it is flowing at the surface.  Would that also be true of the other 

river? 

24.  Assuming the flow pattern in the diagram has the same proportions 
for different radii  (so for a larger radius ball it’s the same pattern 
magnified), how does the fluid velocity gradient near the “equator” of the 
ball change on going from a ball of radius a to one of radius 2a?  
(Assume the two balls are falling through the fluid at the same speed.)  
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Argue that most of the viscous drag on the sphere takes place in a band surrounding the 
equator (so, a band shaped like the tropical zone on the earth).  From this, make plausible 
that the total viscous drag will be proportional to the sphere’s radius, not to the square of 
the radius. 
 
 
 
 
25.  An aged professor vigorously cleaning a blackboard raises a cloud of chalk dust that 
takes several minutes to settle.  From this information, make some estimate of the size of 
chalk particles in the cloud.  Also state whether the drag force from the air on the 
particles is mainly viscous or mainly inertial (for air ). 52 10  Pa.sec.η −= ×
 
26. Imagine a foggy day when the air is still.  Actually, the fog is made up of tiny 
spherical droplets of water.  The fog obviously doesn’t fall to the ground very fast.  Use 
this fact to make some estimate of the probable maximum size of the droplets.  
 
27.  (a) A room freshener sprays out a mist of tiny water droplets (containing some odor 
neutralizer which has a negligible effect on the density of the droplets).  It is claimed that 
the mist will stay in the air for 30 minutes.  Assuming the air in the room is still, and 
neglecting possible evaporation from the droplets, figure out from this the approximate 
size of the droplets.   
 
(b) Justify any formula you use by finding a Reynolds number.  
 
 
28.  After a storm, some rivers and lakes become muddy. Assume the mud particles have 
the density of ordinary rock, say 2500 kg per cubic meter, and assume they are spherical 
to a good approximation. If the still water in a lake one meter deep takes two days for the 
mud to settle to the bottom, use Stokes’ Law to give a ballpark estimate of the size of the 
mud particles. 
 

29.  By staring at a fizzy drink, make some estimate of the size and speed of a typical 
bubble rising to the top. Pick the smallest one you can comfortably see and try to time its 
speed—or make an estimate.  What, very approximately, is the Reynolds number for the 
flow of liquid around the bubble? Is the bubble impeded in its rise mainly by viscous or 
by inertial forces?  (Use the value of η  for water at room temperature, η  =1mPa.sec.)  

30.  Estimate what would be the maximum height of a wall you could jump off and be 
pretty certain of landing without breaking anything (I’m not responsible if you try this!), 
and, from that estimate, figure out a reasonable size for the diameter of a parachute. 

31.  Take the following simple model of a skydiver: suppose that as he falls, all the air is 
his direct path is deflected sideways just as if it bounced off him, imagining his 
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downward profile to be V-shaped.  Ignore viscosity. By making reasonable estimates of 
the size and weight of the skydiver, figure out his terminal velocity.   
 
32. (a) Write down the definition of the Reynold’s number.  
 
(b) Give a ballpark estimate for the Reynold’s number for airflow around a car moving 
down the highway at 20 m⋅sec−1 on a day when there is no wind.   
 
(c) From your estimate above, how significant is the viscosity of the air in the drag force? 
 
(d) If we assume the drag force F only depends on the density of the air ρ, the dimensions 
of the car a, and the speed of the car v, show from dimensional arguments that F = 
Cρa2v2, where C is a constant.  
 
(e) Take C = 0.2 and give an estimate of this force for your car. You can take a value for 
ρ accurate to one significant figure.  State clearly what you take for a2.  
 
(f) What power in kilowatts is the car expending in overcoming this drag force at 20 
m⋅sec−1? 
 
(g) How much would this power go up if the speed were doubled?  
 
33.  (a) Prove by a dimensional argument that the drag force on a falling sphere caused by 
pushing air aside has the form , where C is a constant, ρ is the air density, 
a is the radius of the sphere, and v its speed.  

2 2
dragF C aρ= v

 
 (b) You are jogging a 7½ minute mile in light rain.  There is no wind, the rain appears to 
you to be coming down towards you at a 45° angle.  How fast is the rain falling, in mph 
and in m sec-1?  (1 mile = 1.6 km.) 
 
(c) For raindrops, the C in the formula in part (a) is approximately 1.   Use this to find the 
size of the raindrops in part (b).  (Take air density = 1.3 kg/m3,  g = 10 m.sec-2.) 
 
(d) Find the Reynolds number.  Was it OK to neglect viscous drag? 
 
(e) Would you expect a different answer for raindrop size if you were jogging under 
identical conditions, and seeing the same angle of fall, but at a high altitude resort? Why? 
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