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From a  Circling Complex Number to the Simple Harmonic 
Oscillator 
 
(A review of complex numbers is provided in the appendix to these lectures.) 

Describing Real Circling Motion in a Complex Way 
We’ve seen that any complex number can be written in the form iz re θ= , where r is the distance 
from the origin, and θ   is the angle between a line from the origin to z and the x-axis. This means 
that if we have a set of numbers all with the same r, but different θ  ’s, such as ,i ire reα β , etc., 
these are just different points on the circle with radius r centered at the origin in the complex 
plane.  
 
Now think about a complex number that moves as time goes on: ( ) .i tz t Ae ω=    
 
At time t, z(t) is at a point on the circle of radius A at angle tω  to the x-axis.  That is, z(t) is going 
around the circle at a steady angular velocity ω .  We can also write this: 
 

( ) cos sini tz t Ae A t iAω tω ω= = +  
 
and see that the point z = x + iy is at coordinates ( ) ( ), cos , sin .x y A t A tω ω=  
 

y 

( )z t  

A 

 
 
The angular velocity is ω , the actual velocity in the complex plane is dz(t)/dt.  
 
Let’s differentiate with respect to time: 
 

x 
O 

tω
sinA tω

cosA tω
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( ) ( )cos sin cos sin cos sin .i t i td dAe A t i t i Ae i A t i t i A t A t
dt dt

ω ωω ω ω ω ω ω ω ω ω ω= + = = + = −  

 
Exercise: what are the x and y components of this velocity regarded as a vector?  Show that it is 
perpendicular to the position vector. Why is that? 
 
This differential equation has real and imaginary parts on both sides, so the real part on one side 
must be equal to the real part on the other side, and the same for imaginary parts. That gives 
  

cos sin , sin cosd dt t t
dt dt

tω ω ω ω ω ω= − =  

 
so differentiating the exponential is consistent with the standard results for trig functions.  
 
Differentiating one more time,  

2
2

2
i t i td Ae Ae

dt
ω ωω= −  

 
Again going to the picture of a complex numbers as a two-dimensional vector, this is just the 
acceleration of an object going round in a circle of radius A at angular velocity ω , and is just 

2Aω  towards the center of the circle, the familiar   Thinking physics here, this is the 
motion of an object subject to a steady central force.  

2 2 / .r vω = r

Follow the Shadow: Simple Harmonic Motion 
But what if we just equate the real parts of both sides?  That must be a perfectly good equation: it 
is  

2
2

2 cos cosd A t A t
dt

ω ω ω= −  

This is just the x-component of the circling motion, that is, it is the “shadow” of the circling 
point on the x-axis:  
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A simple animation of this diagram can be found here. 

 
Forgetting for the moment about the circling point, and staring at just this x-axis equation, we see 
it describes the motion of a point having acceleration towards the origin (that is, the minus sign 
ensures the acceleration is in the opposite direction to that of the point itself from the origin) and 
the magnitude of the acceleration is proportional to the distance of the point from the origin.  
 
In fact, motion of this kind is very common in nature!  It is called simple harmonic motion.   
 
A simple standard example is a mass hanging on a spring.  If it is initially at rest, and the string 
has length L (stretched from its natural length to balance mg) then if it is displaced a distance x 
from that equilibrium position, the spring will exert an extra force -kx and the equation of motion 
will be  
 

2

2 .d xm k
dt

x= −  

 
This is exactly the equation of motion satisfied by the “shadow” on the x-axis of a point circling 
at a steady rate. 
 
The general solution is ( ) ( )cosx t A tω δ= + , where a possible phase δ  is included so that the 
point can be anywhere in its oscillation at t = 0.  
 

Oscillations 
Introduction 
In this lecture, we will be looking at a wide variety of oscillatory phenomena.  After a brief recap 
of undamped simple harmonic motion, we go on to look at a heavily damped oscillator.  We do 
that before considering the lightly damped oscillator because the mathematics is a little more 
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straightforward—for the heavily damped case, we don’t need to use complex numbers.  But they 
arise very naturally in the lightly damped case, and are great for understanding the driven 
oscillator and resonance phenomena, as will become apparent in later sections. 

Brief Review of Undamped Simple Harmonic Motion 
Our basic model simple harmonic oscillator is a mass m moving back and forth along a line on a 
smooth horizontal surface, connected to an inline horizontal spring, having spring constant k, the 
other end of the string being attached to a wall. The spring exerts a restoring force equal to – kx 
on the mass when it is a distance x from the equilibrium point.  By “equilibrium point” we mean 
the point corresponding to the spring resting at its natural length, and therefore exerting no force 
on the mass. The in-class realization of this model was an aircar, with a light spring above the 
track (actually, we used two light springs, going in opposite directions—we found if we just one 
it tended to sag on to the track when it was slack, but two in opposite directions could be kept 
taut.  The two springs together act like a single spring having spring constant the sum of the 
two). 
 
Newton’s Law gives: 

2

2,  or  .d xF ma m kx
dt

= = −
 

 
Solving this differential equation gives the position of the mass (the aircar) relative to the rest 
position as a function of time: 
 

0( ) cos( ).x t A tω ϕ= +  
 
Here A is the maximum displacement, and is called the amplitude of the motion. 0tω ϕ+  is 
called the phase.  ϕ  is called the phase constant: it depends on where in the cycle you start, that 
is, where is the oscillator at time zero. 
 
The velocity and acceleration are given by differentiating x(t) once and twice: 
 

0 0( ) sin( )dxv t A t
dt

ω ω ϕ= = − +
 

and 
2

2
0 02

( )( ) cos( ).d x ta t A t
dt

ω ω ϕ= = − +  

We see immediately that this x(t) does indeed satisfy Newton’s Law provided 0ω  is given by 
  

0 .k
m

ω =
 

 
Exercise: Verify that, apart from a possible overall constant, this expression for 0ω  could have 
been figured out using dimensions. 
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Energy 
The spring stores potential energy: if you push one end of the spring from some positive 
extension x to x + dx (with the other end of the spring fixed, of course) the force – kx opposes the 
motion, so you must push with force + kx, and therefore do work kxdx.  To find the total 
potential energy stored by the spring when the end is x0 away from the equilibrium point (natural 
length) we must find the total work required to stretch the spring from its natural length to an 
extension x0.  This means adding up all the little bits of work kxdx needed to get the spring from 
no extension at all to an extension of x0.  In other words, we need to do an integral to find the 
potential energy U(x0): 

0
21

0 02
0

( )
x

U x kxdx kx= =∫ .  

 
So the potential energy plotted as a function of distance from equilibrium is parabolic: 
 

U(x) 

( )

 
 
 
The oscillator has total energy equal to kinetic energy + potential energy,  
 

2 21 1
2 2E mv kx= +  

 
when the mass is at position x.  Putting in the values of x(t), v(t)  from the equations above, it is 
easy to check that E is independent of time and equal to 21

2 k A , A being the amplitude of the 

21
2U x kx=  

Potential Energy U(x) for a Simple Harmonic Oscillator. 
For total energy E, the oscillator swings back and forth  
between x = –A and x = +A. 

x A=  x x A= −  

Total Energy E 
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motion, the maximum displacement.  Of course, when the oscillator is at A, it is momentarily at 
rest, so has no kinetic energy. 

A Heavily Damped Oscillator 
Suppose now the motion is damped, with a drag force proportional to velocity.  The equation of 
motion becomes: 
 

2

2 .d x dxm kx b
dt dt

= − −
 

 
Although this equation looks more difficult, it really isn’t!  The important point is that the terms 
are just derivatives of x with respect to time, multiplied by constants. It would be a lot more 
difficult if we had a drag force proportional to the square of the velocity, or if the force exerted 
by the spring were not a constant times x (this means we can’t stretch the string too far!).  
Anyway, it is easy to find exponential functions that are solutions to this equation.  Let us guess 
a solution: 
 

0 .tx x e α−=  
Inserting this in the equation, using  
 

2
2

0 02,    t tdx d xx e x
dt dt

eα αα α− −= − =
 

 
 
we find that it is a solution provided that α  satisfies: 
 

2 0m b kα α− + =  
 
from which 
 

2 4 .
2

b b mk
m

α ± −
=

 
 
Staring at this expression for α , we notice that for α  to be real, we need to have 
 

2 4 .b m> k  
 
What can that mean?  Remember b is the damping parameter—we’re finding that our proposed 
exponential solution only works for large damping!  Let’s analyze the large damping case now, 
then after that we’ll go on to see how to extend the solution to small damping.  
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Interpreting the Two Different Exponential Solutions 
It’s worth looking at the case of very large damping, where the two exponential solutions turn 
out to decay at very different rates.  For b2 much greater than 4mk, we can write  
 

2

1 2

41
,

2

mkb b
b

m
α α α

± −
= =

 
 

and then expand the square root using  
1/ 2 1

2(1 ) 1 ,x x− ≅ −  
 
valid for small x, to find that approximately—for large b—the two possible values of α  are: 
  

1 2  and   .b k
m b

α α= =  

 
That is to say, there are two possible highly damped decay modes, 
 

1 2
1 2 and .t tx A e x A eα α− −= =  

 
Note that since the damping b is large, 1α  is large, meaning fast decay, and 2α  is small, 
meaning slow decay.  
 
Question: what, physically, is going on in these two different highly damped exponential decays?  
Can you construct a plausible scenario of a mass on a spring, all in molasses, to see why two 
very different rates of change of speed are possible? 
 
Hint: look again at the equation of motion of this damped oscillator.  Notice that in each of these 
highly damped decays, one term doesn’t play any part—but the irrelevant term is a different term 
for the two decays! 
 
Answer 1: for /k bα = , evidently the mass doesn’t play a role.  This decay is what you get if you 
pull the mass to one side, let go, then, after it gets moving, it will very slowly settle towards the 
equilibrium point.  Its rate of approach is determined by balancing the spring’s force against the 
speed-dependent damping force, to give the speed.  The rate of change of speed—the 
acceleration—is so tiny that the inertial term—the mass—is negligible.  
 
Answer 2: for /b mα = , the spring is negligible. And, this is very fast motion (b/m >> k/b, since 
we said b2 >> 4mk.)  The way to get this motion is to pull the mass to one side, then give it a very 
strong kick towards the equilibrium point.  If you give it just the right (high) speed, all the 
momentum you imparted will be spent overcoming the damping force as the mass moves to the 
center—the force of the spring will be negligible. 
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*The Most General Solution for the Highly Damped Oscillator 
The damped oscillator equation 
 

2

2

d x dxm kx b
dt dt

= − −
 

 
is a linear equation. This means that if x1(t) is a solution, and x2(t) is another solution, that is,  
 

2
1 1

12

2
2 2

22

( ) ( )( )

( ) ( )( )

d x t dx tm kx t b
dt dt

d x t dx tm kx t b
dt dt

= − −

= − −
 

 
then just adding the two equations we get: 
 

2
1 2 1 2

1 22

( ( ) ( )) ( ( ) ( ))( ( ) ( )) .d x t x t d x t x tm k x t x t b
dt dt
+ +

= − + −
 

 
 

It is also clear that multiplying a solution by a constant produces another solution: if x(t) satisfies 
the equation, so does 3x(t).  
 
This means, then, that given two solutions x1(t) and x2(t), and two arbitrary constants A1 and A2, 
the function  
 

A1x1(t) + A2x2(t) 
 

is also a solution of the differential equation. 
 
In fact, all possible motions of the highly damped oscillator have this form. The way to 
understand this is to realize that the oscillator’s motion is completely determined if we specify at 
an initial instant of time both the position and the velocity of the oscillator.  The equation of 
motion gives the acceleration as a function of position and velocity, so, at least in principle,  we 
can work out step by step how the mass must move; technically, we are integrating the equation 
of motion, either mathematically, or numerically such as by using a spreadsheet. So, by suitably 
adjusting the two arbitrary constants A1 and A2, we can match our sum of solutions to any given 
initial position and velocity.  
 
To summarize, for the highly damped oscillator any solution is of the form:  
 

2 2

1 2

4 41 1

2 2
1 2 1 2( ) .

mk mkb b b b
b bt tt t m mx t A e A e A e A eα α

+ − − −
− −− −= + = +  

 
Exercises on highly damped oscillations 
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1.  If the oscillator is pulled aside a distance x0, and released from rest at t = 0, what are A1, A2?   
Describe the subsequent motion, especially the very beginning: what is the initial acceleration?  
(Hint: think carefully about how important the damping term is immediately after release from 
rest—you should be able to guess the initial acceleration.) 
 
2. If the oscillator is initially at the equilibrium position x0 = 0, but is given a kick to a velocity 
v0, find A1 and A2 and describe the subsequent motion.  

*The Principle of Superposition for Linear Differential Equations 
The equation for the highly damped oscillator is a linear differential equation, that is, an equation 
of the form (in more usual notation): 
 

2

0 1 2 2

( ) ( )( ) 0df x d f xc f x c c
dx dx

+ + =
 

 
where c0, c1 and c2 are constants, that is, independent of x.  
 
For such a linear differential equation, if f1(x) and f2(x) are solutions, so is A1f1(x) +A2f2(x) for any 
constants A1, A2. This is called the Principle of Superposition, and is proved in general exactly 
as we proved it for the highly damped oscillator in the preceding section. 
 
Even more important, this Principle of Superposition is valid, using analogous arguments, for 
linear differential equations in more than one variable, such as the wave equations we shall be 
considering shortly.  In that case, it gives insight into how waves can pass through each other and 
emerge unchanged. 

A Lightly Damped Oscillator 
We can go through exactly the same mathematical steps in solving the equation of motion as we 
did for the heavily damped case: we look for solutions of the form  
 

0
tx x e α−=  

  
and as before we find there are solutions with  
 

2

1 2
4, .

2
b b mk

m
α α ± −

=
 

 
 
But the difference is that for light damping, by which we mean b2 < 4mk, the expression inside 
the square root is negative!  We are going to have to work with the square root of a negative 
number.  We do this formally by writing: 
 

2 24 4b mk i mk b− = −  
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with i2 = −1 as usual. This gives the two possible exponential solutions: 
 

2 24 4
2 2 2 2

1 2( ) ,    ( ) .
bt i mk b bt i mk bt t
m m m mx t e e x t e e

− −
− − − +

= =  
and a general solution  
 
 

2 24 4
2 2 2 2

1 2( ) .
bt i mk b bt i mk bt t
m m m mx t A e e A e e

− −
− − − +

= +  

 
 

Of course, the position of the mass x(t) has to be a real number!  We must choose A1 and A2 to 
make sure this is so. If we choose 
 

1 1
1 22 2,i iA Ae A Aeδ δ− += =  

 
where A and δ  are real, and remembering  

1
2cos ( ),i ie eθ θθ + −= +  

 
we find  
 

2
2 4( ) cos .

2

bt
m mk bx t Ae t

m
δ

− ⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠  
 
 

This is the most general real solution of the lightly damped oscillator—the two arbitrary 
constants are the amplitude A and the phase δ .   So for small b, we get a cosine oscillation 
multiplied by a gradually decreasing function, e−bt/2m.   
 
This is often written in terms of a decay time τ  defined by  
 

/ .m bτ =  
 

The amplitude of oscillation A  therefore decays in time as / 2te τ− , and the energy of the oscillator 
(proportional to A2) decays as / .te τ−   This means that in timeτ  the energy is down by a factor 
1/e, with e = 2.71828… 
 
The solution is sometimes written 
 

( )2( ) cos
bt
mx t Ae tω δ

−
′= +  

 
where 



 13

 
2 2

2 2
02 2

4 .
4 4

mk b k b b
m m m m

ω ω−′ = = − = −
2

24
 

 
Notice that for small damping, the oscillation frequency doesn’t change much from the 
undamped value: the change is proportional to the square of the damping. 

The Q Factor 
The Q factor is a measure of the “quality” of an oscillator (such as a bell): how long will it keep 
ringing once you hit it?  Essentially, it is a measure of how many oscillations take place during 
the time the energy decays by the factor of 1/e.  
 
Q is defined by: 

0Q ω τ=  
 

so, strictly speaking, it measures how many radians the oscillator goes around in time τ .  For a 
typical bell, τ  would be a few seconds, if the note is middle C, 256 Hz, that’s 0 2 256,ω π= ×  so 
Q would be of order a few thousand.  
 
Exercise: estimate Q for the following oscillator (and don’t forget the energy is proportional to 
the square of the amplitude): 

Damped Oscillator
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The yellow curves in the graph above are the pair of functions +e−bt/2m, − e−bt/2m, often referred to 
as the envelope of the oscillation curve, as they “envelope” it from above and below. 

*Critical Damping 
There is just one case we haven’t really discussed, and it’s called “critical damping”: what 
happens when b2 – 4mk is exactly zero?  At first glance, that sounds easy to answer: there’s just 
the one solution  

2( ) .
bt
mx t Ae

−
=  
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But that’s not good enough—it tells us that if we begin at t = 0 with the mass at x0, it must have 
velocity dx/dt equal to −x0b/2m.  But, in fact, we can put the mass at x0 and kick it to any initial 
velocity we want!  So what happened to the other solution? 
 
We can get a clue by examining the two exponentially falling solutions for the overdamped case 
as we approach critical damping: 
 

2 2
4 41 1

2 2
1 2( )

mk mkb b b b
b bt t

m mx t A e A e
+ − − −

− −
= +  

 
As we approach critical damping, the small quantity 
  

2 4
2

b m
m

ε −
=

k
 

 
approaches zero.  The general solution to the equation has the form  
 

2
1 2( ) ( ).

bt
t tmx t e A e A eε ε− − += +  

 
This is a valid solution for any real A1, A2.  To find the solution we’re missing, the trick is to take 

  In the limit of small 2 .A A= − 1 ε , we can take 1 ,teε tε= +  and we discover the solution 
 

2( ) 2 .
bt
mx t e tε

−
= −  

 
As usual, we can always multiply a solution of a linear differential equation by a constant and 
still have a solution, so we write our new solution as 
 

2
2( ) .

bt
mx t A te

−
=  

 
The general solution to the critically damped oscillator then has the form: 
 

2
1 2( ) ( ) .

bt
mx t A A t e

−
= +  

 
Exercise: check that this is a solution for the critical damping case, and verify that solutions of 
the form t times an exponential don’t work for the other (noncritical damping) cases. 

Shock Absorbers and Critical Damping 
A shock absorber is basically a damped spring oscillator, the damping is from a piston moving in 
a cylinder filled with oil.  Obviously, if the oil is very thin, there won’t be much damping, a 
pothole will cause your car to bounce up and down a few times, and shake you up.  On the other 
hand, if the oil is really thick, or the piston too tight, the shock absorber will be too stiff—it 
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won’t absorb the shock, and you will!  So we need to tune the damping so that the car responds 
smoothly to a bump in the road, but doesn’t continue to bounce after the bump.  
 
Clearly, the “Damped Oscillator” graph in the Q-factor section above corresponds to too little 
damping for comfort from a shock absorber point of view, such an oscillator is said to be 
underdamped.  The opposite case, overdamping, looks like this: 

Overdamped Oscillator
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The dividing line between overdamping and underdamping is called critical damping.  Keeping 
everything constant except the damping force from the graph above, critical damping looks like: 
 

Critically Damped Oscillator
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This corresponds to 0ω′ =  in the equation for x(t) above, so it is a purely exponential curve. 
Notice that the oscillator moves more quickly to zero than in the overdamped (stiff oil) case.  
 
You might think that critical damping is the best solution for a shock absorber, but actually a 
little less damping might give a better ride: there would be a slight amount of bouncing, but a 
quicker response, like this: 
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Slightly Underdamped Oscillator
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You can find out how your shock absorbers behave by pressing down one corner of the car and 
then letting go.  If the car clearly bounces around, the damping is too little, and you need new 
shocks.  

A Driven Damped Oscillator: the Equation of Motion 
We are now ready to examine a very important case: the driven damped oscillator.  By this, we 
mean a damped oscillator as analyzed above, but with a periodic external force driving it.  If the 
driving force has the same period as the oscillator, the amplitude can increase, perhaps to 
disastrous proportions, as in the famous case of the Tacoma Narrows Bridge.  
 
The equation of motion for the driven damped oscillator is: 
 

2

02 cos .d x dxm b kx F
dt dt

tω+ + =
 

 
We shall be usingω for the frequency of the driving force, and 0ω  for the natural frequency of the 

oscillator if the damping term is ignored, 0 / .k mω =  
 

The Steady State Solution and Initial Transient Behavior 
The solution to this differential equation is not unique: as with any second order differential 
equation, there are two constants of integration, which are determined by specifying the initial 
position and velocity.   
 
However, as we shall prove below using complex numbers, the equation does have a unique 
steady state solution with x oscillating at the same frequency as the external drive.  How can that 
be fitted to arbitrary initial conditions?  The key is that we can add to the steady state solution 

any solution of the undriven equation  
2

2 0,d x dxm b kx
dt dt

+ + =  and we’ll clearly still have a 

solution of the full damped driven equation.  We know what those undriven solutions look like: 

http://www.civeng.carleton.ca/Exhibits/Tacoma_Narrows/TacomaNarrowsBridge.mpg
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they all die away as time goes on.  So, we can add such a solution to fit the specified initial 
conditions, and after a while the system will lose memory of those conditions and settle into the 
steady driven solution. The initial deviations from the steady solution needed to satisfy initial 
conditions are termed transients. 
 
Here’s a pair of examples: the same driven damped oscillator, started with zero velocity, once 
from the origin and once from 0.5: 

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

 

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

 
Notice that after about 70 seconds, the two curves are the same, both in amplitude and phase. 

Using Complex Numbers to Solve the Steady State Equation Easily 
We begin by writing:  
 

external driving force = 0
i tF e ω  

 
with F0 real, so the real driving force is just the real part of this, 0 cosF tω . 
So now we’re trying to solve the equation 
 

2

02 .i td x dxm b kx F e
dt dt

ω+ + =  

 
We’ll try the complex function, (( ) i tx t Ae )ω ϕ+= , with A a real number, x(t) cycling at the same 
rate as the driving force.  We can always take the amplitude A to be real: that is not a restriction, 
since we’ve added the adjustable phase factor ie ϕ .  Physically, this factor allows the solution to 
lag the driver in phase, as indeed we shall find to be the case.  If we succeed in finding an x(t) 
that satisfies the equation, the real parts of the two sides of the equation must be equal:  
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( )( ) i tx t Ae ω ϕ+= 0 ,i tF eIf  is a solution to the equation with the complex driving force, ω  its real 

part, ( )cos ,A tω ϕ+ 0 cosF twill be a solution to the equation with the real driving force, . ω
 
It’s very easy to check that ( ) ( )i tx t Ae ω ϕ+=  is a solution to the equation, with the right A and ϕ !  
Just put it in and see what happens.  The differentiations are simple, giving 
 

( ) ( ) ( )2
0 .i t i t i t i tm Ae ib Ae kAe F eω ϕ ω ϕ ω ϕ ωω ω+ + +− + + =  

 
To nail down A and ϕ , we begin by 
cancelling out the common factor i te ω  , 
then shifting the ie ϕ to the other side, to 
find 
 

0
2

iF eA
k m ib

ϕ

ω ω

−

=
− +  

 2 2 2( ) (r k m b )ω ω= − +  To get some insight into this equation, 
let us diagram that complex number 

2k m ibω ω− + .  ibω
 
It has real part 2k mω−  and imaginary 
part ibω .   
 
Its phase is the angleθ : that is, 

2 ik m ib re θω ω− + = .   
 ( )2 2

0k m m

1
2tan b

k m
ωθ
ω

− ⎛ ⎞= ⎜ ⎟−⎝ ⎠

2ω ω ω− = −   
 2k m ibω ω− +The complex number  
 
 

 
 
Putting this in the equation, we have 
 

( )0 0 0
2

i i
i

i

F e F e FA e
k m ib re r

ϕ ϕ
ϕ θ

θω ω

− −
− += = =

− +
 

 

and since A, F0 and r are real, (ie )ϕ θ− +  must be real as well: so ,ϕ θ= − and we see that the 
amplitude A of the oscillations is given by 
 



 19

( ) ( )0 0
2 2 2 2 2

0

, ,
( ) ( )

i tF FA x
r m b

t Ae ω θ

ω ω ω
−= = =

− +
 

 

where we’ve written 2
0k mω= . 

 
So we’ve already solved the differential equation: the amplitude A is proportional to the strength 
of the driving force, and that ratio is determined by the parameters of the undriven oscillator. 
 
The important thing to note about the amplitude A is that if the damping b is small, A gets very 
large when the frequency of the driver approaches the natural frequency of the oscillator!  This is 
called resonance, and is what happened to the Tacoma Narrows Bridge. Of course, it has its 
positive aspects, from getting a swing going to tuning a radio. 
 
The phase lag of the oscillations behind the driver, ( )( )1tan /b k mθ ω−= − 2ω , is completely 

determined by the frequency together with the physical constants of the undriven oscillator: the 
mass, spring constant, and damping strength.  So, when the driving force 0

i tF e ω generates the 

motion ( ) ( ) ( )i t i tx t Ae Aeω ϕ ω+= = θ− ,  the lag angle θ  is independent of the strength of the driving 
force: a stronger force doesn’t get the oscillator more in sync, it just increases the amplitude of 
the oscillations. 
 
Note that at low frequencies, 0 ,ω ω  the oscillator lags behind by a small angle, but at 
resonance 0 / 2,ω ω θ π= =  and for driving frequencies above 0ω , / 2.θ π>  

Back to Reality 

To summarize: we’ve just established that ( ) ( )i tx t Ae ω θ−=   with 2 2 2 2 2
0 0/ ( ) ( )A F m bω ω ω= − +  

and  is a solution to the driven damped oscillator equation ((1tan /b k mθ ω−= − ))2ω
2

02
i td x dxm b kx F e

dt dt
ω+ + =  with the complex driving force 0

i tF e ω . 

 
So, equating the real parts of the two sides of the equation, since m, b, k are all real, 
 

( )cosx A tω θ= −  
 

is a solution of the equation with the real driving force 0 cosF tω . 
 
We could have found this out without complex numbers, by using a trial solution ( )cosA tω ϕ+ .  
However, it’s not that easy—the left hand side becomes a mix of sines and cosines, and one 
needs to use trig identities to sort it all out.  With a little practice, the complex method is easier 
and is certainly more direct. 
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Now the total energy of the oscillator is 
 

2 21 1
2 2

2 21 1
02 2 .

E mv kx

mv m xω

= +

= + 2
 

Putting in 
 ( ) ( ) ( ) ( )cos , sinx t A t v t A tω θ ω= − = − ω θ−  
gives 
 ( ) ( )( )2 2 2 2 21

02 sin cos .E mA t tω ω θ ω ω θ= − + −  
 
Note that this is not constant through the cycle unless the oscillator is at resonance, 0.ω ω=  

 

We can see from the above that at the resonant frequency, 2 21
02E m Aω= , and from the section 

above 
 

0
2 2 2 2 2

0

,
( ) (

FA
m bω ω ω

=
− + )

 

 
so the energy in the oscillator at the resonant frequency is 
 

2 2 2
2 2 2 0 01 1 1

resonance 0 02 2 22 2 2 2
0 0

,
2

F F FQE m A m m
b b m

ω ω
2

0

ω ω
= = = =  

 
recalling that 0 0 / .Q m bω τ ω= =  
 
So Q, the quality factor, the measure of how long an oscillator keeps ringing, also measures the 
strength of response of the oscillator to an external driver at the resonant frequency. 
 
But what happens on going away from the resonant frequency?  Let’s assume that Q is large, and 
the driving force is kept constant.  It won’t take much change inω from 0ω  for the denominator 

2 2 2 2
0( ) (m 2)bω ω− + ω  in the expression for E to double in size.  In fact, for large Q, it’s a good 

approximation to replace bω  by 0bω over that variation, and it is then straightforward to check 
that the energy in the oscillator drops to one-half its resonant value for 0 0 / 2 .Qω ω ω− ≅ ±  
 
Exercise: prove this. 
 
The bottom line is that for increasing Q, the response at the resonant frequency gets larger, but 
this large response takes place over a narrower and narrower range in driving frequencies.  
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And Now to Work… 
An important practical question is: how much work is the driver doing to keep this thing going? 
 
It’s simplest to work with the real solution.  Suppose the oscillator moves through xΔ  in a time 

, the driving force does work tΔ ( )0 cosF tω xΔ , so  
 

( )( ) ( ) ( )0 0rate of working at time   cos / cost F t x t F t vω ω= Δ Δ = t  
 
The important thing is the average rate of working of the driving force, the mean power input, 
found by averaging over a complete cycle: 
 
From ( ) cos( )x t A tω θ= − , ( ) ( )sinv t A tω ω θ= − − , averaging the power input (the bar above 
means average over a complete cycle) and denoting average power by P, 
 

( ) ( )
( )

0

0

2
0 0

1
02

cos

cos sin

cos sin cos cos sin
sin

P F t v t

F A t t

F A t t F A t
F A

ω

ω ω ω θ

ω ω ω θ ω ω
ω θ

=

= − −

= − +

=

θ
 

 
since over one cycle the average  2 1

2cos tω =  and 1
2cos sin sin 2 0t t tω ω ω= =  (Remembering 

at all times, and sine is just cosine moved over, so they must have the same 
average over a complete cycle.) 

2 2cos sin 1t tω ω+ =

 
This can be expressed entirely in terms of the driving force and frequency: 
 
Since 

0
2 2 2 2 2 2 2 2 2 2

0 0

, sin
( ) ( ) ( ) (

F bA
m b m b )

ωθ
ω ω ω ω ω ω

= =
− + − +

 

 
1

02
2 2

0
2 2 2 2 2

0

sin

1
2 ( ) ( )

P F A

b F
m b

ω θ

ω
ω ω ω

=

=
− +

 

 
Exercise 1: Prove that for a lightly damped oscillator, at resonance the oscillator extracts the 
most work from the driving force.  
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Exercise 2: Prove that any solution of the damped oscillator equation (with F = 0) can be added 
to the driven oscillator solution, and gives another solution to the driven oscillator. How do you 
pick the “right solution”? 

The Pendulum 
The Simple Pendulum 
Galileo was the first to record that the period of a swinging lamp high in a cathedral was 
independent of the amplitude of the oscillations, at least for the small amplitudes he could 
observe.  In 1657, Huygens constructed the first pendulum clock, a vast improvement in 
timekeeping over all previous techniques.  So the pendulum was the first oscillator of real 
technological importance.  
 

sinmg θ  

cosmg θ  

 

θ  

Simple pendulum: a mass m 
at the end of a rigid light rod 
of length l, constrained to 
rotate in a vertical plane. 

 
In fact, though, the pendulum is not quite a simple harmonic oscillator: the period does depend 
on the amplitude, but provided the angular amplitude is kept small, this is a small effect. 
 
The weight mg of the bob (the mass at the end of the light rod) can be written in terms of 
components parallel and perpendicular to the rod.  The component parallel to the rod balances 
the tension in the rod.  The component perpendicular to the rod accelerates the bob, 
  

2

2 sin .dml mg
dt
θ θ= −  

 
The mass cancels between the two sides, pendulums of different masses having the same length 
behave identically. (In fact, this was one of the first tests that inertial mass and gravitational mass 
are indeed equal: pendulums made of different materials, but the same length, had the same 
period.) 
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For small angles, the equation is close to that for a simple harmonic oscillator, 
 

2

2 ,dl g
dt
θ θ= −  

 
with frequency /g lω = , that is, time of one oscillation 2 /T lπ= .g

)

 At a displacement of ten 
degrees, the simple harmonic approximation overestimates the restoring force by around one part 
in a thousand, and for smaller angles this error goes essentially as the cube of the angle.  So a 
pendulum clock designed to keep time with small oscillations of the pendulum will gain four 
seconds an hour or so if the pendulum is made to swing with a maximum angular displacement 
of ten degrees. 
 
The potential energy of the pendulum relative to its rest position is just mgh, where h is the 
height difference, that is, (1 cos .mgl θ−   The total energy is therefore 

( )
2 2

21 1
2 21 cosd d 1

2E m l mgl m l mgl
dt dt
θ θθ θ⎛ ⎞ ⎛ ⎞= + − ≅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

for small angles. 

Pendulums of Arbitrary Shape 
The analysis of pendulum motion in terms of angular displacement works for any rigid body 
swinging back and forth about a horizontal axis under gravity.  For example, consider a rigid rod. 
 

 The kinetic energy is given by 21
2 ,Iθ  where I is the 

moment of inertia of the body about the rod, the 
potential energy is ( )1 cosmgl θ− as before, but l is 
now the distance of the center of mass from the axis. 
 

 

The equation of motion is that the rate of change of 
angular momentum equals the applied torque,  
 

sinI mglθ θ= − , 
 
 for small angles the period 2 /T I mπ= gl , and for 
the simple pendulum we considered first 2 ,I ml=  
giving the previous result. 
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Variation of Period of a Pendulum with Amplitude 
As the amplitude of pendulum motion increases, the period lengthens, because the restoring 
force sinmg θ−  increases more slowly than mgθ−  (  for small angles).  The 
simplest way to get some idea how this happens is to explore it with the accompanying 
spreadsheet. 

3sin / 3!θ θ θ≅ −

 
Begin with an initial displacement of 0.1 radians (5.7 degrees): 

Simple Pendulum
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Next, try one radian: 
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The change in period is a little less that 10%, not too dramatic considering the large amplitude of 
this swing.  
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Two radians gives an increase around 35%, and three radians amplitude increases the period 
almost threefold.  It’s well worth exploring further with the spreadsheet. 

 

Introducing Waves: Strings and Springs 
One-Dimensional Traveling Waves 
The most important kinds of traveling waves in everyday life are electromagnetic waves, sound 
waves, and perhaps water waves, depending on where you live.  (Electromagnetic waves include 
X-rays, light, heat, microwaves, radio, etc.)  But it’s tough to analyze waves spreading out in 
three dimensions, reflecting off objects, etc., so we begin with the simplest interesting examples 
of waves, those restricted to move along a line. 
 
Let’s start with a rope, like a clothesline, stretched between two hooks.  You take one end off the 
hook, holding the rope, and, keeping it stretched fairly tight, wave your hand up and back once.  
If you do it fast enough, you’ll see a single bump travel along the rope: 

y 

0 x 

y(x,t) 

wave moving this way 

 
This is the simplest example of a traveling wave.   You can make waves of different shapes by 
moving your hand up and down in different patterns, for example an upward bump followed by a 
dip, or two bumps.  You’ll find that the traveling wave keeps the same shape as it moves down 
the rope. (That’s before it reaches the end, of course—things get more complicated at that 
point—we’ll discuss it later.)   
 
Taking the rope to be stretched tightly enough that we can take it to be horizontal, we’ll use its 
rest position as our x-axis  (see the diagram above).  The y-axis is taken vertically upwards, and 
we only wave the rope in an up-and-down way, so actually y(x,t) will be how far the rope is from 
its rest position at x at time t: that is, the graph y(x,t) above just shows where the rope is at time t.   
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y 

x 

y(x,0) = f(x) y(x,t) = f(x - vt) 

vt 

wave moving this way 

 
We can now express the observation that the wave “keeps the same shape” more precisely. 
Taking for convenience time t = 0 to be the moment when the peak of the wave passes x = 0, we 
graph here the rope’s position at t = 0 (red) and some later time t (green).  Denoting the first 
function by y(x,0) = f(x), then the second  y(x,t) =  f(x- vt): it’s  the same function—the “same 
shape”—but moved over by vt, where v is the velocity of the wave.  
 
To summarize: on sending a traveling wave down a rope by jerking the end up and down, from 
observation the wave travels at constant speed and keeps its shape, so the displacement y of the 
rope at any horizontal position at x at time t has the form 
 

( ) ( ),y x t f x vt= − . 
 
(We’re neglecting frictional effects—in a real rope, the bump gradually gets smaller as it moves 
along.) 

Transverse and Longitudinal Waves 
The wave on a rope described above is called a transverse wave, because, as the wave passes, the 
motion of any actual bit of rope is in the y-direction, at right angles (transverse) to the direction 
of the wave itself, which is of course along the rope.  
 
A different kind of wave is possible: consider a series of balls in a line connected by springs, and 
give the ball on the far left a sudden push to the right.  A wave of compression will move down 
the line:  

wave of compression moving this way 

 
In this case, the motion of each ball as the wave passes through is in the same direction as the 
wave. In fact, this happens as a sound wave travels through air: it’s a longitudinal wave.  
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Traveling and Standing Waves 
Both the waves considered above are traveling waves.  Another familiar kind of wave is that 
generated on a string fixed at both ends when it is made to vibrate. We found in class that for 
certain frequencies the string vibrated in a sine-wave pattern, as illustrated below, with no 
vibration at the ends, of course, but also no vibration at a series of equally-spaced points between 
the ends: these quiet places we term nodes.  The places of maximum oscillation are antinodes.  
We found a sequence of these standing waves on increasing the driving frequency, having 0, 1, 
2, 3, … nodes. The red and green curves indicate the string position at successive times.   

y 

x 0 

string with both ends fixed node 

antinode 
 

Almost all musical instruments generate standing waves: the piano has standing waves on 
strings, the organ generates standing waves in the air in pipes.  Other instruments are more 
complicated: although the sound of a violin comes from a vibrating string, resonance with the 
rest of the instrument gives rise to complicated standing wave patterns.  An excellent discussion 
and demonstration can be found at http://www.phys.unsw.edu.au/music/violin/ , along with links 
to similar pages for other instruments, and many aspects of sound and music. 
 

Analyzing Waves on a String 
From Newton’s Laws to the Wave Equation 
Everything there is to know about waves on a uniform string can be found by applying Newton’s 
Second Law, , to one tiny bit of the string.  Well, at least this is true of the small 
amplitude waves we shall be studying—we’ll be assuming the deviation of the string from its 
rest position is small compared with the wavelength of the waves being studied.  This makes the 
math simpler, and is an excellent approximation for musical instruments, etc.   Having said that, 
we’ll draw diagrams, like the one below, with rather large amplitude waves, to show more 
clearly what’s going on. 

F ma=

 

http://www.phys.unsw.edu.au/music/violin/
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Let’s write down  for the small length of string between x and x + Δx in the diagram 
above.   

F ma=

 
Taking the string to have mass density μ  kg/m, we have .m xμ= Δ   
 
The forces on the bit of string (neglecting the tiny force of gravity, air resistance, etc.) are the 
tensions T at the two ends.  The tension will be uniform in magnitude along the string, but the 
string curves if it’s waving, so the two T  vectors at opposite ends of the bit of string do not quite 
cancel, this is the net force  we’re looking for.  F
 
Bearing in mind that we’re only interested here in small amplitude waves, we can see from the 
diagram (squashing it mentally in the y-direction) that both  T  vectors will be close to 
horizontal, and, since they’re pointing in opposite directions, their sum—the net force —will 
be very close to vertical: 

F

x 

y 

0 

T

T

x x+Δx 

  
 
The vertical component of the tension T  at the x + Δx end of the bit of string is sinT θ , where θ  
is the angle of slope of the string at that end. This slope is of course just , or, 
more precisely, 

( ) /dy x x dx+ Δ
/ tandy dx θ= .   

θ  sinT θ  

 
However, if the wave amplitude is small, as we’re assuming, then θ  is small, and we can take 
tan sinθ θ θ= = , and therefore take the vertical component of the tension force on the string to 
be .  So the total vertical force from the tensions at the two ends becomes ( ) /T Tdy x x dθ = + Δ x
 

( ) ( ) ( )2

2

dy x x dy x d y x
F T T x

dx dx dx
+ Δ⎛ ⎞

= − ≅⎜ ⎟
⎝ ⎠

Δ  
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the equality becoming exact in the limit 0xΔ → . 
 
At this point, it is necessary to make clear that y is a function of t as well as of x: ( ),y y x t= .  In 
this case, the standard convention for denoting differentiation with respect to one variable while 
the other is held constant (which is the case here—we’re looking at the sum of forces at one 
instant of time) is to replace /  with /d dx x∂ ∂ .   
 
So we should write:  

2

2

yF T x
x
∂

= Δ
∂

. 

 
The final piece of the puzzle is the acceleration of the bit of string: in our small amplitude 
approximation, it’s only moving up and down, that is, in the y-direction—so the acceleration is 

just 2 / 2y t∂ ∂ , and canceling Δx between the mass m xμ= Δ  and  
2

2

yF T x
x
∂

= Δ
∂

,  F ma=  gives: 

2 2

2 2

y yT
x t

μ∂ ∂
=

∂ ∂
. 

This is called the wave equation.   
 
It’s worth looking at this equation to see why it is equivalent to F ma= .  Picture the graph 

( ),y y x t= , showing the position of the string at the instant t.  At the point x, the differential 

is the slope of the string.  The second differential,  /y x∂ ∂ 2 / 2y x∂ ∂ , is the rate of change of the 
slope—in other words, how much the string is curved at x.  And, it’s this curvature that ensures 
the T ’s at the two ends of a bit of string are pointing along slightly different directions, and 
therefore don’t cancel. This force, then, gives the mass×acceleration on the right.  

Solving the Wave Equation 
Now that we’ve derived a wave equation from analyzing the motion of a tiny piece of string, we 
must check to see that it is consistent with our previous assertions about waves, which were 
based on experiment and observation.  For example, we stated that a wave traveling down a rope 
kept its shape, so we could write ( ) ( ),y x t f x vt= − .  Does a general function ( )f x vt−  
necessarily satisfy the wave equation?  This f is a function of a single variable, let’s call it 

.  On putting it into the wave equation, we must use the chain rule for differentiation: u x vt= −
 

,f f u f f f u fv
x u x u t u t u
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
and the equation becomes 

2 2
2

2 2

f fT v
u u

μ∂ ∂
=

∂ ∂
 

so the function ( )f x vt− will always satisfy the wave equation provided 
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2 Tv
μ

= . 

All traveling waves move at the same speed—and the speed is determined by the tension and the 
mass per unit length.  We could have figured out the equation for v2 dimensionally, but there 
would have been an overall arbitrary constant.  We need the wave equation to prove that constant 
is 1.  
 
Incorporating the above result, the equation is often written: 
 

2 2

2 2

1
2

y y
x v t
∂ ∂

=
∂ ∂

 

 
Of course, waves can travel both ways on a string: an arbitrary function is an equally 
good solution. 

(g x vt+ )

The Principle of Superposition 
The wave equation has a very important property: if we have two solutions to the equation, then 
the sum of the two is also a solution to the equation.  It’s easy to check this: 
 

( ) ( )2 22 2 2 2

2 2 2 2 2 2 2 2 2

1 1 1f g ff g f g g
x x x v t v t v t

∂ + ∂ +∂ ∂ ∂ ∂
= + = + =

∂ ∂ ∂ ∂ ∂ ∂
. 

 
Any differential equation for which this property holds is called a linear differential equation: 
note that  is also a solution to the equation if a, b are constants. So you can add 
together—superpose—multiples of any two solutions of the wave equation to find a new 
function satisfying the equation. 

( ) (,af x t bg x t+ ),

Harmonic Traveling Waves 
Imagine that one end of a long taut string is attached to a simple harmonic oscillator, such as a 
tuning fork—this will send a harmonic wave down the string,  
 

( ) ( )sinf x vt A k x vt− = − . 
 
The standard notation is 
 

( ) ( )sinf x vt A kx tω− = −  
where of course 
 

vkω = . 
 
More notation: the wavelength of this traveling wave is λ , and from the form ( )sinA kx tω− , at 
say , 0t =
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2kλ π= . 
 
At a fixed x, the string goes up and down with frequency given by sin tω , so the frequency f in 
cycles per second (Hz) is 

Hz.
2

f ω
π

=  

λ 

y 

x 

 
Now imagine you’re standing at the origin watching the wave go by.  You see the string at the 
origin do a complete up-and-down cycle f times per second.  Each time it does this, a whole 
wavelength of the wave travels by.  Suppose that at t = 0 the wave, coming in from the left, has 
just reached you.  
 
Then at t = 1 second, the front of the wave will have traveled f wavelengths past you—so the 
speed at which the wave is traveling 
 

meters per second.v fλ=  

Energy and Power in a Traveling Harmonic Wave Energy and Power in a Traveling Harmonic Wave 
If we jiggle one end of a string and send a wave down its length, we are obviously supplying 
energy to the string—for one thing, as the wave moves down, bits of the string begin moving, so 
there is kinetic energy.  And, there’s also potential energy—remember the wave won’t go down 
at all unless there is tension in the string, and when the string is waving it’s obviously longer 
than when it’s motionless along the x-axis.  This stretching of the string takes work against the 
tension T equal to force times distance, in this case equal to the force T multiplied by the distance 
the string has been stretched.  (We assume that this increase in length is not sufficient to cause 
significant increase in T.  This is usually ok.)  

If we jiggle one end of a string and send a wave down its length, we are obviously supplying 
energy to the string—for one thing, as the wave moves down, bits of the string begin moving, so 
there is kinetic energy.  And, there’s also potential energy—remember the wave won’t go down 
at all unless there is tension in the string, and when the string is waving it’s obviously longer 
than when it’s motionless along the x-axis.  This stretching of the string takes work against the 
tension T equal to force times distance, in this case equal to the force T multiplied by the distance 
the string has been stretched.  (We assume that this increase in length is not sufficient to cause 
significant increase in T.  This is usually ok.)  
  
For the important case of a harmonic wave traveling along a string, we can work out the energy 
per unit length exactly.  We take  
For the important case of a harmonic wave traveling along a string, we can work out the energy 
per unit length exactly.  We take  
    

( ) ( ), sin .y x t A kx tω= −  
 

If the string has mass μ  per unit length, a small piece of string of length xΔ  will have mass 

xμΔ , and moves (vertically) at speed /y t∂ ∂ , so has kinetic energy ( ) ( )21/ 2 /x y tμΔ ∂ ∂ , from 
which the kinetic energy of a length of string is  
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21. . .
2

yK E dx
t

μ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫  

 
For the harmonic wave ( ) ( ), siny x t A kx t ,ω= −   
 

2 2 21. . cos ( )
2

K E A kx t dxμ ω ω= −∫  

 
and since the average value 2 1

2cos ( )kx tω− = , for a continuous harmonic wave the average K.E. 
per unit length  
 

2 21
4. . / meter .K E Aμω=  

 
To find the average potential energy in a meter of string as the wave moves through, we need to 
know how much the string is stretched by the wave, and multiply that length increase by the 
tension T.  
 
Let’s start with a small length xΔ  of string, and suppose that the change in y from one end to the 
other is : yΔ
  

Δy 
Δx

 
The string (red) is the hypotenuse of this right-angled triangle, so the amount of stretching lΔ of 
this length xΔ is how much longer the hypotenuse is than the base xΔ . 
 
So 

( ) ( ) ( )2 2 21 /l x y x x y xΔ = Δ + Δ −Δ = Δ + Δ Δ −Δ .x  
 
Remembering that we’re only considering small amplitude waves, /y xΔ Δ  is going to be small, 
so we can expand the square root using the result 
 

1
21 1   for small x x x+ ≅ +  

to find 
( )21

2 / .l y x xΔ ≅ Δ Δ Δ  
 
To find the total stretching of a unit length of string, we add all these small stretches, taking the 
limit of small 'sxΔ to find 
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( ) ( )2 2 2 21 1
2 2. ./meter / cos .P E T y x dx TA k kx t dxω= ∂ ∂ = −∫ ∫  

 
Now, just as for the kinetic energy discussed above, since 2 1

2cos ( )kx tω− = , the average 
potential energy per meter of string is 
 
 

2 2 2 2 21 1
4 4. . / meter ,  since  and / .P E Tk A A vk v Tμω ω= = = = μ  

 
That is to say, the average potential energy is the same as the average kinetic energy.  This is a 
very general result: it is true for all harmonic oscillators (excepting the case of heavy damping).  
 
Finally, the power in a wave traveling down a string is the rate at which it delivers energy at its 
destination.  Adding together the kinetic and potential energy contributions above,  
 

2 21
2total energy / meter .Aμω=  

 
Now, if the wave is traveling at v meters per second, and being totally absorbed at its destination 
(the end of the string) the energy delivered to that end in one second is all the energy in the last v 
meters of the string.  By definition, this is the power: the energy delivered in joules per second, 
That is, 

2 21
2power .v Aμω=  

Standing Waves from Traveling Waves 
An amusing application of the principle of superposition is adding together harmonic traveling 
waves moving in opposite directions to get a standing wave: 
 

( ) ( )sin sin 2 sin cosA kx t A kx t A kx tω ω ω− + + = . 
 
You can easily check that 2 sin cosA kx tω  is a solution to the wave equation (provided vkω = , 
of course) and it is always zero at points x satisfying kx nπ= , so for a string of length L, fixed at 
the two ends, the appropriate k are given by kL nπ= . 
 
The longest wavelength standing wave for a string of length L fixed at both ends has wavelength  

2Lλ = , and is termed the fundamental. 
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L 

Fundamental Mode of Vibration of a String Fixed at Both Ends 

 
The x-dependence of this wave, sin kx,  is clearly ( )sin /x Lπ , so / .k Lπ=  
   
The radial frequency of the wave is given by vkω = , so / ,v Lω π=  and the frequency in cycles 
per second, or Hz, is 
 

/ 2 / 2   Hz.f v Lω π= =   
 
(This is the same as the frequency /f v λ=  of a traveling wave having the same wavelength.) 
 
Here’s a realization of the superposition of two traveling waves to form a standing wave using a 
spreadsheet: 
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Here the red wave is (sin )A kx tω−  and moves to the right, the green (sin )A kx tω+ moves to 
the left, the black is the sum of the two and its oscillations stay in place.   
 
But this represents just one instant!  To see the full development in time—which you need to do 
to get real insight into what’s going on—download the spreadsheet from 
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/WaveSum.xls ,then click and hold at 
the end of the slider bar to animate. 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/WaveSum.xls
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Exercise: What do you think the black wave will look like if the red and green have different 
amplitudes?  Try it on the spreadsheet. 
 

Boundary Conditions: at the End of the String 
Adding Opposite Pulses 
Our first move in working with waves was to jiggle the end of a string (or spring) and generate a 
pulse that we saw traveled along with no perceptible change in shape.  We showed that our 
observation could be expressed mathematically: taking the string initially at rest along the x-axis, 
its displacement y at point x at time t was evidently described  by a function of the form 

.  This function keeps its shape, but as t progresses it moves to the right with speed 
v.    

(y f x vt= − )

 
We next analyzed the dynamics of the vibrating string by applying Newton’s Laws of Motion to 
a little bit of string. This reveals an equation, the wave equation, that any vibration of the string 
must obey.  Reassuringly, our observed form for the moving pulse, ( )y f x vt= − , does in fact 
satisfy the wave equation.   
 
The wave equation has one very important property: if you add two solutions to the wave 
equation, the sum is another solution to the wave equation.  This means that if you and a friend 
send pulses down a rope from the opposite end, the pulses will go right through each other, and 
when they’re on top of each other, the total displacement of the rope will be just the sum of the 
displacements corresponding to the individual pulses.  We shall see that this gives an important 
clue for understanding what happens when a pulse reaches the end of the string. 

Pulse Reflection 
What happens when the pulse gets to the end of the string depends on the end of the string: there 
are two possibilities: 
 
(a) the end of the string is fixed, 
(b) the end of the string is free to move up and down (the pulse corresponds to the string moving 
in an up-down way). 
 
We refer to these as fixed end and free end boundary conditions.  You may be wondering how 
the string could have a free end, since it needs to be under tension for the wave to propagate at 
all.  This is arranged by having the string terminate on a ring which is free to move up and down 
a smooth rod perpendicular to the direction of the string.   More important examples of free-end 
vibrations come up in analyzing musical instruments like the organ, where we shall find that a 
closed end to an organ pipe is equivalent to a fixed end, an open pipe end is a free end.  

An Experiment on Fixed End Reflection and Free End Reflection 
We use a demonstration which has a wire under tension with thin parallel rods perpendicular to 
the wire attached to it at their centers.  The ends of these rods are painted white for visibility, and 
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waves will travel down this array sufficiently slowly to be followed easily.  It’s easy to send a 
pulse down from one end, then either hold the other end fixed or let it move freely, and observe 
what happens when the pulse reaches the end.  

 
 
It is found that when the pulse reaches the fixed end, it is reflected with its shape intact, but 
switched in sign: if before reflection the pulse bulged the string in the +y direction, after 
reflection it bulged the string in the –y direction.  
 
However, if the end rod is free to rotate, the pulse is reflected without a change of sign. 

Understanding Sign Change in Pulse Reflection  
The key to seeing what’s going on when a pulse is reflected is to do a different experiment: send 
two pulsed down a rope from opposite ends and watch carefully as they pass in the middle.  Let’s 
start with two pulses identical in shape, but of opposite sign.  We’ll generate the pulses with a 
spreadsheet, and watch them as they pass.  Remember, the total displacement of the string at any 
point is the sum of the displacements of the separate pulses. 
 
The two separate pulses look like this: 
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Bearing in mind that the green hides the red along the axis when they’re together, the green and 
red are separately solutions to the wave equation, the sum of the two pulses is also a solution, 
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and that’s the black line—the actual position of the string at some moment after the pulses are 
sent on their way—in the diagram below:   
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Tracking the two pulses as time goes on, they meet: 

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 
 
Now we can see the green pulse moving to the right and the red to the left: 
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They pass (look at the string!): 
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Reviewing this sequence of pictures, notice that the string at the central point, x = 2.5, never 
moves.  It might as well have been nailed in place.  Imagine we did nail it in place, chopped off 
the string to the right of center, and just sent one pulse down from the left-hand end.  To see what 
would happen, we would need to solve the wave equation for the string subject to the fixed end 
on the right, and a pulse being sent down from the left.  But we already know the solution to the 
wave equation for the whole string with the initial two pulses described above, and the midpoint 
always stayed fixed.  This solution, confined to the left hand half, is to the same equation with 
the same boundary condition and the same initial configuration as the two pulses on the whole 
string scenario—so it must be the same solution!  We are forced to conclude that when a pulse 
that curves downwards is sent towards a fixed end, the reflected pulse curves upwards—it just 
follows the same sequence as the left-hand half in our two pulses full string solution.  And, 
needless to add, this is what we see experimentally. 
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Free End Boundary Condition 
Suppose now in the rod model we send a pulse down from the left, but instead of fixing the rod 
on the right-hand end, we allow it to rotate freely. What happens?  Recall that in deriving the 
wave equation by writing F = ma for a small piece of string, the accelerating force on the string 
depended on the small difference in slope of the string at the two ends of the little piece under 
consideration.  Our rod model is a discretized version: for a rod somewhere in the middle, the net 
force on it depends on the slight difference in slope of the lines connecting it to its neighbors.  
But for the last rod, if it’s free to move, there’s only a force on one side. For it to have the same 
acceleration as its neighbors, the force it feels from its only neighbor must be tiny, it must be 
comparable to the difference in force from typical neighbor rods.  This means that the curve 
made by the dots on the ends of the rods (see photo of equipment) must be essentially horizontal 
at the end—the last two rods are almost lined up. 
 
A string is the limit of this picture with more and more rods, closer and closer together. The free 
end boundary condition for a string is, then, that its slope goes to zero at the boundary. 
 
It’s easy to see that with this boundary condition, a pulse will be reflected without change of 
sign.  Just take the spreadsheet and send down two pulses of the same sign: 
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It’s evident from the complete symmetry that the slope of this curve is always going to be zero at 
the central point, so if we blind ourselves to the right-hand half, and imagine the left-hand half to 
be a complete string subject to the boundary condition at the right-hand end that the string slope 
be zero, a pulse coming towards the end from the left will be reflected without change of sign. 
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As mentioned earlier, although this is a rather artificial boundary condition for a string, we shall 
soon see it is exactly the right boundary condition for an open end of an organ pipe, so this 
analysis is relevant for some real-life systems. 
 

Sound Waves 
 “One-Dimensional” Sound Waves 
We’ll begin by considering sound traveling down a hollow pipe, to avoid unnecessary 
mathematical complications. Sound is a longitudinal wave—as the wave passes through, the air 
moves backwards and forwards in the pipe, this oscillatory movement is in the same direction the 
wave is traveling.  
 
To visualize what’s happening, imagine mentally dividing the air in the pipe, which is at rest if 
there is no sound, into a stack of thin slices.  Think about one of these slices. In equilibrium, it 
feels equal and opposite pressure from the gas on its two sides.  (This is analogous to the little bit 
of string at rest feeling equal and opposite tension on its two sides, but of course the gas pressure 
is inward).  As the sound wave goes through, the pressure wave generates slight differences in 
pressure on the two sides of our thin slice of air, and this imbalance of forces causes the slice to 
accelerate. 
 
To analyze this quantitatively—to apply F ma=  to the thin slice of air—we must begin by 
defining displacement, the quantity corresponding to the string’s transverse movement ( ),y x t . 

We shall use ( ),s x t  to denote the horizontal (along the pipe) displacement of the thin slice of air 
which rests at position x when no sound is present.  
 

 .   
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If the pipe has radius a, and hence cross-sectional area 2aπ , a slice of air of thickness xΔ  has 
volume , so writing the density of air 2a xπ Δ ρ  (1.29 kg/m3), the mass of the slice of air is 

.  Clearly, its acceleration is 2m V aρ ρπ= = Δx ( )2 , /a s x t 2t= ∂ ∂ , so we already have the right-

hand side of .  To find the left hand side—the force on the thin slice of air—we must 
find the pressure imbalance between the two sides. 

F ma=

Relating Pressure Change to How the Displacement Varies 
The pressure change as  the sound wave moves down the tube is directly tied to the local 
compression or expansion of the gas.  It’s like a spring: as the gas is compressed into a smaller 
volume, its pressure rises, and as the gas expands the pressure drops.  And, exactly as for a 
spring, the changes in pressure and volume are linearly related.  The coefficient of 
proportionality is called the bulk modulus, usually written B, and defined by the equation: 
 

Vp B
V
Δ

Δ = −  

 
Note the sign!  As the volume decreases, the pressure increases.  Since the ratio of volumes is 
dimensionless, the units for the bulk modulus are the same as for pressure: Pascals.  For air at 
standard temperature and pressure, the bulk modulus B = 105 Pa. 
 
Now, we are tracking the motion of the gas as the sound wave passes through by following the 
parameter the displacement along the tube at time t of gas having equilibrium position x.  

Obviously, if 
( ), ,s x t

( ),s x t  does not depend on x, all the gas is shifted by the same amount, and no 
compression or expansion has taken place.  Local change in volume only happens if there is local 
variation in . ( ),s x t
 
To make this quantitative, consider a slice of gas having thickness xΔ (when at rest):  if, at some 
instant when the sound wave is passing through, the right-hand end is displaced by , 

and the left-hand end by a greater amount
( ),s x x t+ Δ

( ),s x t , say, 
 

xΔ  (length at rest) 

 
 
the thickness of the slice has evidently been changed from xΔ  to 
 

( ) ( )( ), , .x s x t s x x tΔ − − + Δ  
 

( ),s x t ( ),s x x t+ Δ  
length at time t 

Compression of a thin “slice” of air resulting from different displacements at the two ends
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Since the volume of air in the slice is directly proportional to its thickness, the sound wave has at 
this instant changed the volume of the air initially in the segment xΔ near the point x by a 
fraction 

( ) ( ) ( ), ,s x x t s x t s x tV
V x

+ Δ − ∂Δ
= =

Δ ∂
,

x
 

 
the differential being exact in the limit of a thin slice.   
 
Therefore, the local extra pressure is directly proportional to minus the gradient of : ( ),s x t
  

( , )V s xp B B
V x

tΔ ∂
Δ = − = −

∂
. 

From F = ma  to the Wave Equation 
Having found how the local pressure variation relates to ( ),s x t , we’re ready to derive the wave 

equation from F = ma for a thin slice of gas.  Recall that for such a slice , and 
of course . 

2m V aρ ρπ= = Δx
( )2 2, /a s x t t= ∂ ∂

 
The net force F on the slice is the difference between the pressure at x and that at x x+Δ :  
 
 

2
2 2 2 2 2

2

( , ) ( , ) ( , )( , ) ( , ) s x t s x x t s x tF p x t a p x x t a a B a B a B x
x x

π π π π π∂ ∂ + Δ ∂
= − + Δ = − + = Δ

∂ ∂ x∂
. 

 
Putting this into F = ma: 
 

2 2

2 2 2

( , ) 1 ( , ) , where s x t s x t Bv
x v t ρ

∂ ∂
= =

∂ ∂
 

 
This is exactly the wave equation we found for the string, with now the longitudinal 
displacement s replacing the transverse displacement y, and the bulk modulus playing the role of 
the string tension, both being measures of stored potential energy arising from local variations in 
displacement.  The densities, of course, play the same role in the two cases, measuring how 
much kinetic energy is stored for given local displacement velocities.   

Boundary Conditions for Sound Waves in Pipes 
Since the new wave equation is identical in form to that for waves on a string, our discussion of 
traveling waves, standing waves, etc., for a string can be carried over with the appropriate 
changes of notation and applied here.  
 
For example, a standing wave in a pipe has the form ( ), sin sins x t A kx tω= , this would be for a 
pipe closed at x = 0, so that the air doesn’t move at x = 0.  
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The boundary condition for a closed end of a pipe is: 
 

( ), 0 at a closed end.s x t =  
 
What about an open end?  In that case, the air is free to move—the boundary condition won’t be 

 However, the pressure is not free to vary: it’s atmospheric pressure, the pipe being 

open to the atmosphere.  So at an open end 
( ),s x t = 0.

0.pΔ =   Remembering that  ( ), / ,p B s x t xΔ = − ∂ ∂  the 
boundary condition is: 

( ),
0 at an open end.

s x t
x

∂
=

∂
 

 
 

Harmonic Standing Waves in Pipes 
Consider now a standing harmonic wave in a pipe of length L, closed at x = 0 but open at x = L. 
 
From the x = 0 boundary condition, the wave must have the form  ( ), sin sins x t A kx tω= .   
 
The x = L open end boundary condition requires that the slope ( ), / 0.s L t x∂ ∂ =  
That is, cos  0.kL =
 
Exercise: Prove that the longest wavelength standing wave possible in the pipe has wavelength 
4L, and sketch the wave. 
 
Exercise: what is the next longest wavelength of a possible standing wave in the pipe?  Draw a 
picture.  

Traveling Waves: Power and Intensity 
Another solution to the wave equation is  
 

( ) ( ), sins x t A kx tω= −  
 
where vkω = ,  just as for string.  This is a wave traveling down the pipe.  It could be generated 
by an oscillating plate at the closed end:  in other words, a speaker. 
 
How much power is this speaker putting out?  It’s moving and pushing against the pressure:   
 

Power = P = rate of working = force x velocity = pressure x area x velocity 
 

How fast is it moving?  At time t, the plate is at 
 

( )0, sin ,s x t A tω= = −  
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so it is moving at velocity 
 

( ) ( )0,
cos .plate

s x t
v t A

t
tω ω

∂ =
= = −

∂
 

 
The pressure at the plate is where pΔ
 

( )( , ) sin coss x tp B B A kx t ABk t
x x

ω ω∂ ∂
Δ = − = − − = −

∂ ∂
 

 
at x = 0. 
 
So the rate of working at time t, the power P(t)  = velocity x force: 
 

( ) ( ) 2 2 2 2cosplateP t v t p a A B a k tπ π ω ω= Δ =  
 
 
The standard definition of power for any kind of wave generator is the average power over a 
complete cycle.   
 
Since the average value of cos2x = ½,    
 

2 21
2power  P A B a kπ ω= . 

 
Using 2B v ρ=  and vkω = , this can be written  
 

2 2 21
2 .P A a vπ ω ρ=  

 
This also tells us how much energy there is in the wave as it travels:  
 

2 2 21
2 A aπ ω ρ  per meter. 

 
The intensity of the wave is average power per square meter of cross sectional area, so here  
 

2 21
2Intensity  I A vω ρ=  

 
and I is measures in watts per square meter.   
 
The factor v, the velocity, in the above expression comes about because in one second, the 
energy delivered by a steady sound wave to one square meter of area perpendicular to the 
direction of the wave’s motion is the energy in v cubic meters of wave: taking the speed of sound 
to be 330 meters per second, 330 cubic meters of sound energy will plough into one square meter 
each second. 
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Waves in Two and Three Dimensions 
Introduction 
So far, we’ve looked at waves in one dimension, traveling along a string or sound waves going 
down a narrow tube.  But waves in higher dimensions than one are very familiar—water waves 
on the surface of a pond, or sound waves moving out from a source in three dimensions.   
 
It is pleasant to find that these waves in higher dimensions satisfy wave equations which are a 
very natural extension of the one we found for a string, and—very important—they also satisfy 
the Principle of Superposition, in other words, if waves meet, you just add the contribution from 
each wave.  In the next two paragraphs, we go into more detail, but this Principle of 
Superposition is the crucial lesson. 

The Wave Equation and Superposition in One Dimension 
For waves on a string, we found Newton’s laws applied to one bit of string gave a differential 
wave equation,  

2 2

2 2

1
2

y y
x v t
∂ ∂

=
∂ ∂

 

 
and it turned out that sound waves in a tube satisfied the same equation.  Before going to higher 
dimensions, I just want to focus on one crucial feature of this wave equation: it’s linear, which 
just means that if you find two different solutions ( )1 ,y x t  and ( )2 ,y x t then ( ) ( )1 2, ,y x t y x t+ is 
also a solution, as we proved earlier.   
 
This important property is easy to interpret visually: if you can draw two wave solutions, then at 
each point on the string simply add the displacement ( )1 ,y x t  of one wave to the other ( )2 ,y x t —
you just add the waves together—this also is a solution.  So, for example, as two traveling waves 
moving along the string in opposite directions meet each other, the displacement of the string at 
any point at any instant is just the sum of the displacements it would have had from the two 
waves singly.  This simple addition of the displacements is termed “interference”, doubtless 
because if the waves meeting have displacement in opposite directions, the string will be 
displaced less than by a single wave.  It’s also called the Principle of Superposition. 

The Wave Equation and Superposition in More Dimensions 
What happens in higher dimensions?  Let’s consider two dimensions, for example waves in an 
elastic sheet like a drumhead.  If the rest position for the elastic sheet is the (x, y) plane, so when 
it’s vibrating it’s moving up and down in the z-direction, its configuration at any instant of time 
is a function ( ), ,z x y t . 
 
In fact, we could do the same thing we did for the string, looking at the total forces on a little bit 
and applying Newton’s Second Law.  In this case that would mean taking one little bit of the 
drumhead, and instead of a small stretch of string with tension pulling the two ends, we would 
have a small square of the elastic sheet, with tension pulling all around the edge.  Remember that 
the net force on the bit of string came about because the string was curving around, so the 
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tensions at the opposite ends tugged in slightly different directions, and didn’t cancel.  The 
2 / 2y x∂ ∂  term measured that curvature, the rate of change of slope. In two dimensions, thinking 

of a small square of the elastic sheet, things are more complicated.  Visualize the bit of sheet to 
be momentarily like a tiny patch on a balloon, you’ll see it curves in two directions, and tension 
forces must be tugging all around the edges.  The total force on the little square comes about 
because the tension forces on opposite sides are out of line if the surface is curving around, now 
we have to add two sets of almost-opposite forces from the two pairs of sides.  I’m not going to 
go through all the math here, but I hope it’s at least plausible that the equation is: 
  

2 2 2

2 2 2

1z z
2

z
x y v t
∂ ∂ ∂

+ =
∂ ∂ ∂

. 

 
The physics of this equation is that the acceleration of a tiny bit of the sheet comes from out-of-
balance tensions caused by the sheet curving around in both the x- and y-directions, this is why 
there are the two terms on the left hand side. 
 
Remarkably, this same equation comes out for water waves (at least for small amplitudes), sound 
waves, and even the electromagnetic waves we now know as light, radio, etc..  (And, going to 

three dimensions is easy: add one more term to get  
2 2 2 2

2 2 2 2

1
2

f f f f
x y z v t

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
.  This sum of 

partial differentiations is so common in physics that there’s a shorthand: ( )2 2 21/ / .2f v f t∇ = ∂ ∂ )  
 
Just as we found in one dimension traveling harmonic waves ( ) (sin )f x vt A kx tω− = − , with 

vkω = , you can verify that the three-dimensional equation has harmonic solutions 

( ) ( ), , , sin x y zf x y z t A k x k y k z tω= + + − and now v kω = , where 2 2 2 .x y zk k k k= + +   In fact, k  
is a vector in the direction the wave is moving.  The electric and magnetic fields in a radio wave 
or light wave have just this form (or, closer to the source, a very similar equivalent expression 
for outgoing spheres of waves, rather than plane waves).   
 
It’s important to realize that this more complicated equation is still a linear equation—the 
principle of superposition still holds.  If two waves on an elastic sheet, or the surface of a pond, 
meet each other, the result at any point is given by simply adding the displacements from the 
individual waves.  (Assuming as always small waves, so the water waves don’t fall apart into 
foam.)  
 
We’ll begin by thinking about waves propagating freely in two and three dimensions, than later 
consider waves in restricted areas, such as a drum head. 

How Does a Wave Propagate in Two and Three Dimensions? 
A one-dimensional wave doesn’t have a choice: it just moves along the line (well, it could get 
partly reflected by some change in the line and part of it go backwards).  But when we go to 
higher dimensions, how a wave disturbance starting in some localized region spreads out is far 
from obvious.  But we can begin by recalling some simple cases: dropping a pebble into still 
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water causes an outward moving circle of ripples.  If we grant that light is a wave, we notice a 
beam of light changes direction on going from air into glass.  Of course, it’s not immediately 
evident that light is a wave: we’ll talk a lot more about that later.   
 

Huygen’s Picture of Wave Propagation  
If a point source of light is switched on, the wavefront is an expanding sphere centered at the 
source.  Huygens suggested that this could be understood if at any instant in time each point on 
the wavefront was regarded as a source of secondary wavelets, and the new wavefront a moment 
later was to be regarded as built up from the sum of these wavelets. For a light shining 
continuously, this process just keeps repeating.  

Wave front 
at time t 

New wave front slightly later 

Sample secondary wavelets 

Huygens’ picture of how a spherical wave propagates:  each point 
on the wave front is a source of secondary wavelets that generate 
the new wave front. 

 
 
What use is this idea? For one thing, it explains refraction—the change in direction of a 
wavefront on entering a different medium, such as a ray of light going from air into glass.  
 
If the light moves more slowly in the glass, velocity v instead of c, with v < c, then Huygen’s 
picture explains Snell’s Law, that the ratio of the sines of the angles to the normal of incident and 
transmitted beams is constant, and in fact is the ratio c/v.   
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 2θ
 1θ

Snell’s Law : a ray of light entering glass from air is bent towards the normal, and 

1sin / sin 2θ θ  is the same for any entering angle. 

 
 
This is evident from the diagram below: in the time the wavelet centered at A has propagated to 
C, that from B has reached D, the ratio of lengths AC/BD being c/v.  But the angles in Snell’s 
Law are in fact the angles ABC, BCD, and those right-angled triangles have a common 
hypotenuse BC, from which the Law follows.  
 

WA 

C 
A 

D B 
WB 

air glass 

Huygens’ explanation of refraction: showing two wavelets 
from the wavefront AB:    
 
WB is slowed down compared with WA , since it is propagating in 
glass.  This turns the wave front through an angle. 

 
Huygens’ picture also provides a ready explanation of what happens when a plane wave front 
encounters a barrier with one narrow opening: and by narrow, we mean small compared with the 
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wavelength of the wave.  It’s easy to arrange this for water waves: it’s found that on the other 
side of the barrier, the waves spread out in circular fashion form the small hole. 
 

A plane wave encounters a barrier 
with an opening smaller than a 
wavelength: the wave spreads in 
circular fashion on the far side. 

 

Two-Slit Interference:  How Young measured the Wavelength of Light  
If the slit is wider than a wavelength or so, the pattern gets more complicated, as we would 
expect from Huygens’ ideas, because now the waves on the far side arise from a line of sources, 
not what amounts to one point.  To investigate this further, consider the simplest possible next 
case: a barrier with two small holes in it, so on the far side we’re looking at waves radiating 
outwards from, effectively, two point sources.  

 

Waves spreading out from two small slits in a barrier: the blue 
circles represent wave crests, where two cross the wave has 
maximum positive value, for example along the central line. 

 
For two synchronized sources generating harmonic waves, at any point in the tank equally 
distant from the two sources (the central line in the picture above), the waves will add, the water 
will be maximally disturbed.  For light waves, there will be a maximum in brightness at the 
center of a screen as shown in the diagram: 
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For light waves passing through two narrow slits and shining on a screen (on the right) there will 
be another bright spot at a point P away from the center C2 of the screen, provided the distances 
of P from the two slits differ by a whole number of wavelengths: 

Waves passing through two narrow slits in a barrier.  If the distance 
S2P to point P on the screen is exactly one wavelength longer than 
S1P, the waves will arrive at P in phase and reinforce each other.  

S2 

S1 

P 

C2 C1 

Q 

d 

2S Q λ=  

Waves passing through two narrow slits in a barrier.  Since the 
distance S2C2  to point C2 on the screen is equal to S1C2,  the waves 
will arrive at C2 in phase and reinforce each other.  For light, this 
means a bright spot at the center of the screen. 

S2 

C1 

S1 

L 

C2 

 

x 

 
 
 
On the other hand, at a point approximately half way from the center of the screen to P the waves 
from the two sources will arrive at the screen exactly out of phase: the crest of one will arrive 
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with the trough of the other, they will cancel, and there will be no light.  Evidently, then, we will 
see on the screen a series of bright areas and dark areas, the brightest spots being at the points 
where the waves from the two slits arrive exactly in phase.   
 
There is a Flash animation of this pattern formation here. 
 
This pattern, generated by what is called interference between the waves, and also referred to as 
a diffraction pattern is historically important, because it was used to establish that light is a 
wave, by Thomas Young in 1807.  (Recall Newton had believed light was a stream of particles, 
and that was very widely accepted at the time.)   
 
Young used the pattern to find the wavelengths of red and violet light.  His method can be 
understood from the diagram above.  We did the experiment in class with a slit separation of 
about 0.2 mm., giving bright spots on the screen about 3 cm apart, with a screen 10 m from the 
slits.  
 
That is to say, in the diagram above we had  and we found 

 (within a percent or two).  Looking at the diagram, it’s clear that the angle to P 
from the slits is very small, in fact it’s   So the diagram as drawn is 
very exaggerated!    

3
1 2 1 20.2 10 m, 9.5m,S S C C−= × =

2 3 cm.C P x= =
3/ 3.15 10 radianx L −= × s.

 
Now, the line S1Q is perpendicular to the light rays setting off for P (they are extremely close to 
parallel).   The angle between S1Q and S1S2  is the same as that between C1P and C1C2, that is, 

 This means that the lengths S1Q and S1S2 are effectively equal, and therefore 
that 

33.15 10 radians.−×

  
32

1 2

3.15 10 .S Q x
S S d L

λ −= = = ×  

 
This is very accurate for such a small angle, and for the data as given here the wavelength of the 
light  3 73.15 10 6.3 10 m 630nm.dλ − −= × = × =

Another Bright Spot 
About ten years after Young’s result a French civil engineer, Augustin Fresnel, independently 
developed a wave theory of light, and gave a more complete mathematical analysis.  This was 
disputed by the famous French mathematician Simeon Poisson, who pointed out that if the wave 
theory were true, one could prove mathematically that in the sharp shadow of a small round 
object, there would be a bright spot in the center, because the waves coming around the 
circumference all around would add there.  This seemed ridiculous—but French physicist 
Francois Arago actually did the experiment, and found the spot!  The wave theory of light had 
arrived. 
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The Doppler Effect 
Introduction   
(Flashlet here) 
 
The Doppler effect is the perceived change in frequency of sound emitted by a source moving 
relative to the observer: as a plane flies overhead, the note of the engine becomes noticeably 
lower, as does the siren noise from a fast-moving emergency vehicle as it passes.  The effect was 
first noted by Christian Doppler in 1842.  The effect is widely used to measure velocities, usually 
by reflection of a transmitted wave from the moving object, ultrasound for blood in arteries, 
radar for speeding cars and thunderstorms.  The velocities of distant galaxies are measured using 
the Doppler effect (the red shift).  

Sound Waves from a Source at Rest 
To set up notation, a source at rest emitting a steady note generates circular wavecrests: 
 

λ  

The concentric circles represent wave 
crests generated by the central source at a 
frequency f0 waves per second.  
Their separation is the wavelength λ ,  
where 0 /f v λ= ,  v being the speed of the 
waves.   
 
A stationary observer will (of course) 
observe them to reach him with frequency 
f0.  

 
 
The circles are separated by one wavelengthλ and they travel outwards at the speed of sound v.  
If the source has frequency f0, the time interval 0τ  between wave crests leaving the source 
 

0
0

1 .
f

τ =  

 
As a fresh wave crest is emitted, the previous crest has traveled a distance λ , so, since it’s 
moving at speed v,  

0 ,   vτ λ=  
 
and therefore 

0 .f vλ =  

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/doppler.htm
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Sound Waves from a Moving Source 
The Doppler effect arises because once a moving source emits a circular wave (and provided the 
source is moving at less than the speed of the wave) the circular wave crest emitted continues its 
outward expansion centered on where the source was when it was emitted, independent of any 
subsequent motion of the source. 
 
Therefore, if the source is moving at a steady speed, the centers of the emitted circles of waves 
will be equally spaced along its path, indicating its recent history.  In particular, if the source is 
moving steadily to the left, the wave crests will form a pattern: 
 

Wave crests emitted by a 
source in steady motion 
to the left at speed us. 

 
 
Or, to be more realistic (from Wikipedia Commons): 
 

 
 
It is evident that, as a result of the motion of the source, waves traveling to the left have a shorter 
wavelength than they had when the source was at rest.  And it’s easy to understand why. 
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Denoting the steady source velocity by us, in the time 0 1/ 0fτ =   between crests being emitted the 
source will have moved to the left a distance s 0.u τ   At the same time, the previously emitted crest 
will itself have moved to the left a distance .λ   Therefore, the actual distance between crests 
emitted to the left will be 

0.suλ λ τ′ = −  
 
These waves, having left the source, are of course moving at the speed of sound v relative to the 
air—the motion of the source does not affect the speed of sound in air.  Therefore, as these 
waves of wavelength λ′  arrive at an observer placed to the left so the source is moving directly 
towards him, he will hear a frequency / .f v λ′ ′=  
 
That is, the observed frequency 
 

0
s 0 s 0 s

1 1 .
1 / 1 /

v v vf f
u u uλ λ τ λ τ λ

⎛ ⎞ ⎛
′ = = = =⎜ ⎟ ⎜′ − − −⎝ ⎠ ⎝ v

⎞
⎟
⎠

 

 
(Note that for the common case ( )s /u v 1 , we can approximate, ( )0 s1 /f f u′ ≅ + v .) 
 
By an exactly parallel argument, for a source moving away from an observer at speed us, the 
frequency is lower by the corresponding factor:  

 0
s

1For source moving away from observer  .
1 /

f f
u v

⎛ ⎞
′ = ⎜ ⎟+⎝ ⎠

 

 

Stationary Source, Moving Observer 
Consider now an observer moving at speed uobs directly towards a  stationary frequency f0 source.  
So, she’s moving to meet the oncoming wave crests.  Remember, the wave crests are λ  apart in 
the air, and moving at v.  Suppose her time between meeting successive crests is τ ′ .  During this 
time, she moves obsu τ ′ , the wave crest moves vτ ′  coming to meet her, and between them they 
cover the distanceλ  between crests. 
 
 

obsu τ ′  vτ ′  

λ  

incoming waves at speed v 

The observer moves at uobs towards the 
 incoming waves, meeting successive 

  crests  at time intervals τ ′
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It is evident from the diagram that the time interval she will measure between meeting successive 
crests is  

obsu v
λτ ′ =
+

 

 
and therefore the sound frequency she measures is 
 

obs obs obs
0

1 1 1u v u uvf f
v vτ λ λ

+ ⎛ ⎞ ⎛ ⎞′ = = = + = +⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠
.  

 

Source and Observer Both Moving Towards Each Other 
For this case, the arguments above can be combined to give: 
 

obs
0

s

1 / .
1 /

u vf f
u v

⎛ ⎞+′ = ⎜ ⎟−⎝ ⎠
 

 
Both motions increase the observed frequency.  If either observer or source is moving in the 
opposite direction, the observed frequency is found by switching the sign of the corresponding u.  

Doppler Effect for Light 
The argument above for the Doppler frequency shift is accurate for sound waves and water 
waves, but fails for light and other electromagnetic waves, since their speed is not relative to an 
underlying medium, but to the observer.  To derive the Doppler shift in this case requires special 
relativity.  A derivation can be found in my Modern Physics notes. 
 
The Doppler shift for light depends on the relative velocity u of source and observer: 
 

 0
1 /
1 /

u cf f
u c

+′ =
−

 

for motion towards each other. 

Other Possible Motions of Source and Observer 
We’ve assumed above that the motions of source and observer are all along the same straight 
line.  But as we hear the change in frequency of a jet engine passing overhead, the note drops 
smoothly, because we’re off the straight line path of the plane.  The actual note heard as a 
function of time can be found from fairly simple geometric considerations to be 

(0 / 1 cos /s )f f u θ′ = − v , where θ  is the angle between the straight line path and a line from the 
source to the observer.  This factor is incorporated in police speed radar units.  One interesting 
point: if 0/ 2, f fθ π ′= = .  This seems very reasonable, but is not the case for light, where 
observed time dilation of the source gives a frequency shift.  This was found unequivocally in a 
beautiful series of experiments in the 1930’s (by Ives and Stillwell) attempting to disprove 
special relativity. 

http://galileo.phys.virginia.edu/classes/252/srel_twins.html
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Appendix: Complex Numbers 
Real Numbers 
Let us think of the ordinary numbers as set out on a line which goes to infinity in both positive 
and negative directions.  We could start by taking a stretch of the line near the origin (that is, the 
point representing the number zero) and putting in the integers as follows: 
 

 
 
Next, we could add in rational numbers, such as ½ ,  23/11, etc., then the irrationals like 2 ,  
then numbers like π , and so on, so any number you can think of has its place on this line.  
 
Now let’s take a slightly different point of view, and think of the numbers as represented by a 
vector from the origin to that number, so 1 is    
 
 

 
 
and, for example,  –2 is represented by: 
 

 
 
 
Note that if a number is multiplied by –1, the corresponding vector is turned through 180 
degrees.  In pictures,  
 
 

 
 
The “vector” 2 is turned through π , or 180 degrees, when you multiply it by –1.  
 
What are the square roots of 4? 
 
Well, 2, obviously, but also –2, because multiplying the backwards pointing vector –2 by –2 not 
only doubles its length, but also turns it through 180 degrees, so it is now pointing in the positive 
direction.  We seem to have invented a hard way of stating that multiplying two negatives gives a 
positive, but thinking in terms of turning vectors through 180 degrees will pay off soon.  

Solving Quadratic Equations 
In solving the standard quadratic equation 
 

ax2 + bx + c = 0 
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we find the solution to be: 

2 4
2

b b acx
a

− ± −
=

. 
 
The problem with this is that sometimes the expression inside the square root is negative.  What 
does that signify?  For some problems in physics, it means there is no solution.  For example, if I 
throw a ball directly upwards at 10 meters per sec, and ask when will it reach a height of 20 
meters, taking g = 10 m per sec2, the solution of the quadratic equation for the time t has a 
negative number inside the square root, and that means that the ball doesn’t get to 20 meters, so 
the question didn’t really make sense.  
 
We shall find, however, that there are other problems, in wide areas of physics, where negative 
numbers inside square roots have an important physical significance.  For that reason, we need to 
come up with a scheme for interpreting them.  
 
The simplest quadratic equation that gives trouble is: 
 

x2 + 1 = 0 
 

the solutions being 1.x = ± −  
  
What does that mean?  We’ve just seen that the square of a positive number is positive, and the 
square of a negative number is also positive, since multiplying one negative number, which 
points backwards, by another, which turns any vector through 180 degrees, gives a positive 
vector.  Another way of saying the same thing is to regard the minus sign itself, -, as an operator 
which turns the number it is applied to through 180 degrees.  Now ( ) ( )2 2− × −  has two such 
rotations in it, giving the full 360 degrees back to the positive axis.  
 
To make sense of the square root of a negative number, we need to find something which when 
multiplied by itself gives a negative number.  Let’s concentrate for the moment on the square root 
of –1, from the quadratic equation above.  Think of –1 as the operator – acting on the vector 1, so 
the – turns the vector through 180 degrees.  We need to find the square root of this operator, the 
operator which applied twice gives the rotation through 180 degrees.  Put like that, it is pretty 
obvious that the operator we want rotates the vector 1 through 90 degrees.  
 
But if we take a positive number, such as 1, and rotate its vector through 90 degrees only, it isn’t 
a number at all, at least in our original sense, since we put all known numbers on one line, and 
we’ve now rotated 1 away from that line. The new number created in this way is called a pure 
imaginary number, and is denoted by i.   
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Once we’ve found the square root of –1, we can use it to write the square root of any other 
negative number—for example, 2i is the square root of –4.  Putting together a real number from 
the original line with an imaginary number (a multiple of i) gives a complex number.   Evidently, 
complex numbers fill the entire two-dimensional plane.  Taking ordinary Cartesian coordinates, 
any point P in the plane can be written as (x, y) where the point is reached from the origin by 
going x units in the direction of the positive real axis, then y units in the direction defined by i, in 
other words, the y axis.  
 
Thus the point P with coordinates (x, y) can be identified with the complex number z, where 
 

z = x + iy. 
 

The plane is often called the complex plane, and representing complex numbers in this way is 
sometimes referred to as an Argand Diagram. 
 
Visualizing the complex numbers as two-dimensional vectors, it is clear how to add two of them 
together.  If z1 = x1 + iy1, and z2 = x2 + iy2, then z1 + z2 = (x1 + x2) + i(y1 + y2).  The real parts and 
imaginary parts are added separately, just like vector components. 
 
Multiplying two complex numbers together does not have quite such a simple interpretation. It 
is, however, quite straightforward—ordinary algebraic rules apply, with i2 replaced where it 
appears by −1.  So for example, to multiply z1 = x1 + iy1 by z2 = x2 + iy2,  
 

z1z2 = (x1 + iy1)( x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1). 
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Polar Coordinates 
Some properties of complex numbers are most easily understood if they are represented by using 
the polar coordinates ( ,r )θ  instead of (x, y) to locate z in the complex plane. 
 

 
 

Note that z = x + iy can be written (cos sinr i )θ θ+  from the diagram above. In fact, this 
representation leads to a clearer picture of multiplication of two complex numbers: 
 

( ) ( )
( ) ({ }

( ) ( )( )

1 2 1 1 1 2 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

cos sin cos sin

cos cos sin sin sin cos cos sin

cos sin .

z z r i r i

r r i

r r i

θ θ θ θ

)θ θ θ θ θ θ θ θ

θ θ θ θ

= + +

= − + +

= + + +

 

 
So, if  

( ) 1 2cos sin ,z r i zθ θ= + = z  
 
then 

1 2r r r=  
 

and 
1 2.θ θ θ= +  

 
That is to say, to multiply together two complex numbers, we multiply the r’s – called the moduli 
– and add the phases, the θ  ’s.  The modulus r is often denoted by | z |, and called mod z, the 
phase θ   is sometimes referred to as arg z.  For example, |i| = 1, arg i = / 2.π    
 
We can now see that, although we had to introduce these complex numbers to have a 1− , we 
don’t need to bring in new types of numbers to get i− , or i .  Clearly, 1i = , arg i = 45°.  

It is on the circle of unit radius centered at the origin, at 45°, and squaring it just doubles the 
angle. 
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The Unit Circle 
In fact this circle—called the unit circle—plays an important part in the theory of complex 
numbers.  Every point on the circle has the form 
 

( )cos sin Cis ,  say.z iθ θ θ= + =  
 

 
Since all points on the unit circle have |z| = 1, by definition, multiplying any two of them 
together just amounts to adding the angles, so our new function ( )Cis θ  satisfies 
 

( ) ( ) ( )1 2 1Cis Cis = Cis .2θ θ θ +θ  
 
But that is just how multiplication works for exponents! 
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That is,  1 2 1 2a a aθ θ θ += θ  for a any constant, which strongly suggests that maybe our function 
( )Cis θ  is nothing but some constant a raised to the power θ ,  that is, ( )Cis .aθθ =    

 
It turns out to be convenient to write ( )ln ,a Aa e eθθ θ= = say, where A = ln a.   
 
This line of reasoning leads us to write cos sin .Ai e θθ θ+ =   
 
Now, for the above “addition formula” to work for multiplication, A must be a constant, 
independent of θ .  Therefore, we can find the value of A by choosing θ   for which things are 
simple.  We take θ   to be very small—in this limit cos 1, sinθ θ θ= = , and 1 ,Ae Aθ θ= +  
dropping terms of order 2θ  and higher.  
 
Substituting these values into cos sin Ai e θθ θ+ =  gives A = i.  
 
So we find: 

( )cos sin ii re θθ θ+ = . 
 
To test this result, we expand ie θ  : 

2 3 4 5

2 3 4 5

2 4 3 5

( ) ( ) ( ) ( )1 ...
2! 3! 4! 5!

1 ...
2! 3! 4! 5!

(1 ...) ( ...)
2! 4! 3! 5!

cos sin

i i i i ie i

i ii

i

i

θ θ θ θ θθ

θ θ θ θθ

θ θ θ θθ

θ θ

= + + + + + +

= + − − + + +

= − + − + − + −

= +  
 
We write cos siniθ θ= +  in the last line because the series in the brackets are precisely the 
Taylor series for cos  and sin ,θ θ  confirming our equation for ie θ . Changing the sign of θ  it is 
easy to see that  

cos sinie iθ θ θ− = −  
 
so 

( )1
2cos i ie eθ θθ −= + , and  ( )1

2sin .i ii e eθ θθ −= −  
 
 
Bottom Line: any complex number can be written: 
 

( )cos sin iz r i re θθ θ= + =  
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Complex Exercises 
1. Show where in the complex plane are: 1, i, 1 3 , ,i i i− + , and write all these numbers in 
the form .ire θ  
2.  State the rule for multiplying two complex numbers of the form ire θ , and from that figure out 
the inverse of a complex number: that is, express ( )1/ ire θ as 1

1 .ir e θ  

3. Find how to invert a number in the other notation: if 1 ,a ib
x iy

= +
+

 find a, b in terms of x, y.  

Hint: it helps to multiply 1  by .x iy
x iy x iy

−
+ −

 

 
4. Show on a diagram where in the complex plane is a cube root of -1, we’ll call it .ω  How many 
cube roots does -1 have?  Show all possibilities on the diagram.  Next, what about cube roots of 
1?  Show them on another figure.  (Note: ω  is commonly used for a cube root of -1. we also use 
it, of course, for angular frequency.  Take care not to confuse the two.) 
 
5. Draw a complex number z as a vector (pointing from the origin to z), then draw on the same 
diagram as vectors  iz, z/i,  .zω  (ω being the cube root of -1.) 
 
6. Using cos sinie iθ θ θ= + , from ( )i A B iA iBe e+ = e

)
, deduce the formulas for 

( ) (sin ,cos .A B A B+ +  
 
7. Suppose the point z moves in the complex plane is such a way that at time t ( ) 0i tz t Ae ω= , 

where A is real and .  Where is z at t = 0? Where at t = 1 second? Where at t = 0.5 
seconds? Where at t = 0.25 seconds?  Describe how z moves as time progresses. 

-1
0 2  secω π=

 
How would your answer change if A were pure imaginary instead of real? 
 
8. Consider again ( ) 0i tz t Ae ω= , .  Differentiate both sides to find an expression for 

the velocity 

-1
0 2  secω π=

( ) /z t dz d= t  as the point moves along its path.  How does the velocity vector relate 
to the position vector?  Next, find by differentiating again the acceleration vector, and comment 
on its direction. 
 
9. State briefly how z behaves in time if ( ) i tz t Ae ω=  for real ω .  How would this behavior 
change if ω had a small imaginary part, 0 iω ω= + Γ , where Γ is small?  Sketch how z would 
move in the complex plane, both for Γ  positive and Γ  negative.  
 
10.  Consider the quadratic equation 2 2 1x bx 0− + = .  For b = 1, both roots equal 1.  Sketch (in 
the complex plane) how the larger root moves as b varies from 1.2 down through 1 to 0.8.   
When you’ve done that, do the same for the other root, preferably in a different color. 
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 Oscillations and Waves Homework Problems 
Oscillations 
1. Dimensional exercises: use dimensions to find a characteristic time for an undamped simple 
harmonic oscillator, and a pendulum.  Why does the dimensional argument work for any initial 
displacement of the oscillator, but only small swings of the pendulum? 
 
What possible characteristic times can be found dimensionally for a damped oscillator?  Explain 
the physical significance of these times for a heavily damped oscillator, and a lightly damped 
oscillator. 
 
2. (a)  A heavily damped oscillator has mass m, spring constant k and damping force –bv, where 
v = dx/dt.  
 
Before t = 0, the mass is at rest at x = 0, but at t = 0, a sudden kick gives it velocity v0.  
 
Sketch a graph of how v varies in time after that.  (You are not expected to solve the equation 
here, just sketch the behavior.)  Is the behavior immediately after the kick any different from the 
behavior later on?  Are all the parameters m, k, b equally important throughout the motion? 
Explain briefly. 
 
 (b) Suppose the heavily damped oscillator is pulled to x0 away from x = 0, then released from 
rest. Sketch its position as a function of time.  State which of m, k, b are important immediately 
after the mass is released, and which are important later on.  
 
 
3. Open the damped oscillator spreadsheet.  Let’s first examine damped motion without the 
spring.  Set m = 1, k = 0, b = 3, xinit = 0, vinit = 3.   
 
(a) How does the curve relate to the dimensionally derived time(s) for a damped oscillator? 
 
(b) Write down the equation for this damped k = 0 “oscillator”.  (Of course, this won’t oscillate!). 
Put dx/dt = v, to get a first-order equation for v.  Solve it, and see if your solution agrees with the 
spreadsheet curve. 
 
(c) Now you’ve found v(t), you know dx/dt.  Write down and solve the equation for x(t), and 
check that it agrees with the spreadsheet. 
 
(d) Bring back the spring: set k = 1.  Does this significantly change the initial shooting upwards 
of the curve?  What, then, are the important terms in the equation for that initial part of the 
motion? 
 
(e) Look at the very top of the curve, the maximum value of x: what are the important terms in 
the equation in that neighborhood? 
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(f) For longer times, which terms in the equation dominate?  Drop the least important term, and 
solve the remaining equation.  Then check to see if this is a good approximation or not.  
 
4.  Open the damped oscillator spreadsheet.  Fix the constants to give the critical damping curve.  
Then lower the damping b until you can detect the oscillator going past the origin.   
 
(a)   Roughly, by what percentage do you need to lower b to see this?   
 
(b)  Suppose in building a model for a shock absorber you were willing to let the downward 
swing be as much as 5% of the original upward displacement, and you take m = 1, k = 1 for the 
model, what would be the value of b? 
 
5. Open the damped driven oscillator spreadsheet and put k = 1, b = 0.1, omega = 1.25, delta_t = 
0.055. 
 
(a) What’s going on at the beginning? It might help to set b = 0 temporarily to get some insight. 
 
(b) Note that the solution settles down to a steady state.  Does the time to settle down depend on 
the initial conditions?  Change them and find out. Set xinit large, for example.  Can you arrange 
the initial conditions so that the steady solution takes over immediately?  How would you do 
that?  
 
6. (a)  Open the pendulum spreadsheet.  See how the period varies with the amplitude: it’s 
initially set at 0.1 radian.  Try 1 radian, 2 radians, 3 radians. 
 
(b) In the pendulum spreadsheet, set the initial angle theta_init =0, then try the initial angular 
velocity omega_init = 4, 5, 6, 7.  Interpret your result.  How can you make the pendulum period 
very long? 
 
7.  An unpowered streetcar is accelerating under gravity down a ten degree slope.  Neglect 
friction and air resistance, assume the acceleration is the same as a smooth block sliding down a 
frictionless surface.  A pendulum of length l is hung from the ceiling inside.  

 
(a)  If the pendulum is at rest, what is the direction of the 
string? 
 

? (b) What is the period of oscillation of the pendulum? 
 
 
 
 
 

8.  (a) Imagine a tunnel can be drilled directly through the center of the Earth, insulated from 
internal heat, and the air evacuated.  You drop a package into the tunnel.  How long does it take 
to reach the surface at the other end?  How does that time compare with a low orbit satellite? 
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(b) Suppose a tunnel is constructed in a straight line from New York to Los Angeles, so it 
doesn’t follow the Earth’s curvature.  Estimate how steep the downhill gradient is at the ends.   
If a frictionless maglev train goes through the tunnel in a vacuum, with no power but gravity, 
how long will the trip take? 
 
9.  A 1 kg mass rests on a spring.  A gentle downward pulse causes vertical oscillations at 5Hz. 

  
(a)  Suppose a balloon is attached to the top of the 
mass.  The balloon has a mass of 0.05kg, but feels a 
buoyancy force able to lift 0.55 kg.  How does this 
affect the period of the oscillation? 
 
(b) What would be the period of the mass + spring (no 
balloon) on the Moon?  (gMoon = 2 m/s2.)  
 
 
 
 

10.  A spring is hanging vertically at rest.  A mass held in the hand is gently attached to the end 
of the spring, then released.  The system oscillates, the maximum downward distance being 3 cm 

below the original position.  
 
What is the period of oscillation? 
 
 
 
 
 
 

11. Let us represent a ship weighing 20,000 tons (1 ton = 1,000 kg) by a rectangular 
parallelepiped, 150 m long, 30 m across, 20 m deep.  Show that in vertical motion, this ship 
behaves as a simple harmonic oscillator, and find the period. 
 
12. A flat horizontal plate driven from below oscillates vertically with an amplitude of 1 mm.  
Some sand (of negligible mass) is sprinkled on the plate.  The frequency of the oscillator is 
gradually increased from zero. At what frequency will the sand lose contact with the plate?  At 
what point in the cycle will this happen? 
 
13. (a)  Prove that for a lightly damped oscillator, the change in frequency caused by the 
damping is approximately  2

0 / 8 .Qω
 
(b) If damping causes a 1% decrease in the frequency of an oscillator, what is its Q value?   Over 
how many cycles does the energy drop by 1/e?  Over how many cycles does the energy drop by 
½?   
 
14. A lightly damped oscillator has mass m, spring constant k and damping factor b. 
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(a) Prove that at any instant of time the rate of loss of energy is bv2 joules/sec., v being the 
instantaneous velocity. 
 
(b) Assuming the change in amplitude in a single cycle is negligible, what is the average value of 
v2 over the cycle compared with the maximum value of v2 ?  
 
(c) If he energy loss in one second is small, show that it is well approximated by 

, and deduce that for long times the energy decays as  ( ) ( )(1 0 1 1E t E t b m= = = − × )/ / .bt me−

 
15. A lightly damped driven oscillator exhibits a strong resonance at frequency 0.ω  Prove that at 
resonance, the total energy in the oscillator for a given driving force is proportional to Q2.   
 
 
16.  An old but precisely made pendulum clock keeps time within one second a day in 
Charlottesville.  The proud owner takes it to a new apartment in Wintergreen, about 3000 feet 
above Charlottesville in altitude.  If  the clock is not adjusted, how many seconds a day will it 
gain or lose?  (Assume the new room location is kept at the same temperature as the earlier 
place.) 
 
17. The bob of a pendulum is a uniform disk of radius 4 cm , attached to the end of a very light 
rod, so that  the center of the bob is a distance 30 cm  from the support axle (which would be 

perpendicular to the page). 
 
(a) Find the moment of inertia of the bob about the axle (you’ll 
need to use the Parallel Axis Theorem). 

Axle perpendicular 
to page 

 
(b) For small oscillations, what percentage error in the period 
arises in using the simple point-mass approximation?  

θ    
 
 
 
 
 
 
 
 

 
18.  (a)  A pendulum clock that keeps perfect time in the ground floor lobby of the Empire State 
Building is taken to a room at the top of the building, 1250 feet high.  How many seconds (or 
what fraction of a second) do you expect it to gain or lose per day?  Assume the temperature is 
the same, and neglect the mass of the building. 
 
(b)  Actually, the building weighs 300,000 tons.  Figure out if that will affect your estimate 
significantly.  
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19.  In the lecture notes on oscillations, we wrote the equation of motion of the driven damped 
oscillator as 

2

02 cosd x dxm b kx F
dt dt

tω+ + =  

and solved it by replacing 0 cosF tω  with 0
i tF e ω : the equation is then quite easy to solve, putting 

in a trial complex number solution (( ) i tz t Ae )ω ϕ+=  (having real part ( ) cos( )x t A tω ϕ= + ) we 
found expressions for A and φ.   
   
(a) Derive the expressions for A and φ.  Show on a complex plane diagram 0

i tF e ω and z(t) at some 
instant in time, and also show a vector (or complex number) representing the velocity at 
that instant.  State how these complex numbers move as time goes on.   

/dz dt

 
(b) Check that the real part ( ) cos( )x t A tω ϕ= + is in fact a solution of the differential equation.  
 
(c) Sketch how A varies with ω, especially near ω0, for small damping b.  
 
(d) Sketch how φ varies with ω, especially near ω0, for small damping b. 
 
(e) For the real solution, when the oscillator moves through Δx, the driving force does work 
( )0 cosF tω Δx .  Prove from this that the rate of working of the driving force is ( ) ( )0 cosF t vω t , 
where v(t) is the velocity at time t.  By averaging over a complete cycle, find the average rate of 
working – the power – of  the driving force.  
 
(f) How does the power vary with ω, especially near ω0, for small damping b?  Give a brief 
explanation. 
 
 
20. We proved in the lecture that the steady-state solution for the damped oscillator driven by a 
force 

( ) 0 cosF t F tω=  
is 
 

( ) ( )

( )

0
2 2 2 2 2

0

2 2
0

cos ,   where

,
( ) ( )

tan .

x t A t
FA

m b
b

m

ω θ

ω ω ω
ωθ

ω ω

= −

=
− +

=
−

 

 
(a) Prove that the total energy in the oscillator, kinetic + potential, usually varies through the 
cycle.  (Note that ω  itself does not vary.) 
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Compare the rate of working of the driving force and that of the damping force, and explain how 
your result ties in with the answer to part (a).   
 
(b) Prove that at the resonant frequency, the energy in the oscillator is 
 

22
0

resonance 2
0

.
2

FQE
mω

=  

 
(c) Prove that the power input (rate of working) of the driver at resonance is 
 

2
0

resonance
0

.
2

FQP
mω

=  

 
(d) The power input will drop to half on varying ω  away from resonance when the denominator 

2 2 2 2
0( ) (m 2)bω ω− + ω  doubles.  Assume Q is large, so you can replace bω  by 0bω over this 

range, and conclude the power input is halved at 0 0 / 2 .Qω ω ω− ≅ ±   Sketch very roughly the 
power input as a function of driving frequency for a large Q, then for double that Q on the same 
sketch. 
 
21.  (a) Estimate Q for the following oscillator (and don’t forget the energy is proportional to the 
square of the amplitude): 
 

Damped Oscillator

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

 
 

(b) What kind of Q value would you expect for a guitar string?   Is a high Q value in a musical 
instrument always a good thing? 
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Waves 
 
22. Sketch the appearance of a single transverse wave pulse traveling down a string at some 
instant, and below it sketch the velocities of the small segments of string at that same instant.  
 
 
23. (a)  Write down the wave equation for a string mass m per unit length, tension T.  
 
(b) With the aid of a diagram, explain briefly how the wave equation follows from F = ma. (You 
don’t need to put in mathematical details, just make it sound plausible.) 
 
(c)  Prove that any function of the form  f(x - vt)  or  f(x + vt) satisfies the equation.  
 
(d) Show how a standing harmonic wave can be constructed by adding two waves traveling in 
opposite directions.  
 
 
24. (a) For a standing harmonic wave on a string, draw the position of the string when the kinetic 
energy is a maximum. 
 
(b) For a standing wave having transverse displacement y(x, t) = Asinkxcosωt, what is the total 
energy in one wavelength?  
 
25.  (a) For a sound wave in air, the velocity depends on the density of the air ρ and the bulk 
modulus B.  Use the method of dimensions to find v (apart from a dimensionless constant) as a 
function of ρ and B.  
 
(b) In a sound wave, how does the air density variation at any point relate to the displacement 
s(x, t)?  State the result, and then draw a simple diagram with s varying as a function of x at some 
instant of time t to make your answer plausible.  
 
(c) In class, we showed that a tuning fork oscillating at 512 cycles per second caused resonance 
in a tube closed at one end, open at the other, of length about 16cm, and there were no 
resonances at shorter lengths.  From this observation, figure out the speed of sound – but you 
must justify any statements about nodes, antinodes, etc., in picturing the resonating gas in the 
tube.  
 
26.  Assume a wave y = Asin(kx − ωt) is traveling down a long taut string.  
 
(a) Sketch the form of the wave at t = 0, showing the wavelength λ on your diagram.  
(b)  What is λ in terms of k? 
(c)  At x = 0, the string oscillates at frequency f  Hz  (cycles per second). What is f in terms of ω? 
(d)  What is the speed of the wave in terms of λ and f ?  Give a short explanation of your result.  
(e)  In what way is the wave y = Asin(kx + ωt) different from y = Asin(kx − ωt)? 
 



 70

(f) Suppose the two waves in (e) are added.  Draw a diagram of the resulting wave form, and 
describe how it varies in time.  
 
27.  Suppose that in a standing sound wave in the air in an organ pipe, the displacement of the air 
at point x at time t is Asinkxcosω t.   
 
(a)  Draw a sketch of this displacement curve at t = 0, and show on your curve where the 
pressure is a maximum.  
 
(b)  Give a brief justification for your choice of where the pressure is a maximum in your answer 
to (a).  
 
(c)  Consider an organ pipe of length L, closed at one end and open at the other. What condition 
does the displacement satisfy at the closed end of the pipe?  Explain briefly. 
 
(d)  Same as (c), but at the open end of the pipe. 
 
(e) Give an approximate value for the length of the organ pipe if the lowest note is 34 Hz. 
 
(f) What is the next lowest note (resonant frequency) for this pipe?  
 
28.  A uniform wire one meter long is held at tension 500N. It has a mass of 0.05kg. It is 
vibrating in its fundamental mode with an amplitude of 0.5cm.  
 
(a)  What is its maximum kinetic energy? What is its instantaneous shape at the moment of 
maximum kinetic energy? 
 
(b) What is its maximum potential energy? What is its instantaneous shape at the moment of 
maximum potential energy? 
 
(c) How are your answers to (a), (b) changed if the wire is vibrating in its first harmonic with the 
same amplitude?  
 
 
29.  Given that the note middle C corresponds to a frequency of 262 Hz., find the length of an 
organ pipe having this as its fundamental (lowest frequency) note 
(a) if both ends of the pipe are open 
(b) if one end is closed, one end open. 
(c) What note would the organ pipe sound if filled with helium gas? (the bulk modulus is the 
same as for air).  
 
30. Humans can only hear sounds in the frequency range 20 Hz to 20,000 Hz.  What would be 
the longest and shortest organ pipes there is any point in manufacturing? 
 
31.  The speed of sound in water is about 1.5 km/sec.  
(a)  Figure out from that the bulk modulus of water.  
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(b) How compressed in volume is the water at the bottom of the deepest ocean? 
 
32. A piston (a speaker) at one end of a long tube is oscillating at 262 Hz with an amplitude of 
0.2mm.  The piston is circular, with a diameter 5 cm.   
(a) Find the maximum pressure variation at the plate. 
(b) What is the average power output of the plate? 
(c) How much energy is there in one meter of the traveling wave as it goes down the tube? 
 
33. Assume a steel piano wire is 50 cm long and weighs 3 grams.  It is held at a tension of 
1,000N.  (a)  What is its fundamental frequency?   
(b)  What is the wavelength of that sound in air? 
(c) How does the speed of a traveling wave in the steel piano wire compare to the speed of sound 
in air?  The speed of sound in solid steel is far greater than the speed of sound in air.  Does that 
contradict your finding for the wire?  Explain why or why not. 
 
34. A string under tension is pulled aside in the middle so it has the following V-shape: 
 

 
Describe with a series of sketches the subsequent motion of the string.  
(Hint: study the spreadsheet addition of two traveling sine waves to form a standing wave. The 
initial string configuration here is half a wave length of a zigzag wave.)  
 
35.  A police radar unit operates at a frequency of 24 GHz.  A car is approaching such a unit at 
80 mph.  What is the beat frequency the unit detects between the emitted signal and the echo 
from the car? 
 
36.  A tsunami is a wave typically of height of order one meter, and wavelength of order one 
hundred kilometers—much greater than the ocean depth.  This is called a wave in “shallow 
water”, and in this case it is found that the wave speed does not depend on the wavelength, but 
only on the ocean depth and g. 
 
(a ) Use dimension arguments to find an order of magnitude estimate for the speed of a tsunami 
wave in the open ocean. 
 
(b) How does the wave speed change on approaching shore?  Give a ballpark estimate. Assuming 
there is only a small loss of energy, how will the height of the wave change as it approaches the 
shore?  
 
37.  Open the spreadsheet 
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/WaveSum.xls from the Web Notes 
page. Use it to plot the sum of two waves close in wavelength and frequency to get beats.  (Hint: 
you can change the scale with delta_x to get a wider view.) How does the frequency of the beats 
relate to the frequencies of the two waves beating together? 
 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/WaveSum.xls
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For some waves, such as those in water, the wave speed changes with wave length. It’s always 
true that ω = vk, but v now depends on k.  Take two waves with k’s close together, but 

1 1 2 2/ k / kω ω≠  (although close).  Hold down the slider bar to see a movie of how the wave 
develops, and describe how it differs from that for 1 1 2 2/ /k kω ω= . 

 
38.  A narrow pipe 1 meter long is open at both ends.  The lowest frequency sound mode in the pipe 

is excited with a tuning fork. 
 

 (a) What is the wavelength of this lowest mode? 
 
(b) What is the frequency of the tuning fork? 

  
(c) Explain with a sketch and simple graphs how the displacement of the air in the pipe s(x,t) 
varies with time at one end and in the middle. 
 
(d) Explain similarly how the pressure varies with time at one end and in the middle, and 
comment on how the pressure variation correlates with the displacement variation. 
  

39.  (a) Draw a diagram explaining Young’s two-slit experiment, and show with your diagram how 
the wavelength of light can be determined by observing the location of the first bright spot away 
from the center. 

 
(b) From your diagram, derive the formula for the wavelengthλ in terms of slit separation d, 
distance to screen D and distance between bright spots x.  Mention any approximations you 
make. 
 
(c) Explain how the pattern of bright spots changes if more slits are added, the distance between 
neighboring slits still being the same d. 
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