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Oscillations 
Michael Fowler  3/24/07 

Introduction 
In this lecture, we will be looking at a wide variety of oscillatory phenomena.  After a brief recap 
of undamped simple harmonic motion, we go on to look at a heavily damped oscillator.  We do 
that before considering the lightly damped oscillator because the mathematics is a little more 
straightforward—for the heavily damped case, we don’t need to use complex numbers.  But they 
arise very naturally in the lightly damped case, and are great for understanding the driven 
oscillator and resonance phenomena, as will become apparent in later sections. 

Brief Review of Undamped Simple Harmonic Motion 
Our basic model simple harmonic oscillator is a mass m moving back and forth along a line on a 
smooth horizontal surface, connected to an inline horizontal spring, having spring constant k, the 
other end of the string being attached to a wall. The spring exerts a restoring force equal to – kx 
on the mass when it is a distance x from the equilibrium point.  By “equilibrium point” we mean 
the point corresponding to the spring resting at its natural length, and therefore exerting no force 
on the mass. The in-class realization of this model was an aircar, with a light spring above the 
track (actually, we used two light springs, going in opposite directions—we found if we just one 
it tended to sag on to the track when it was slack, but two in opposite directions could be kept 
taut.  The two springs together act like a single spring having spring constant the sum of the 
two). 
 
Newton’s Law gives: 

2

2,  or  .d xF ma m kx
dt

= = −
 

 
Solving this differential equation gives the position of the mass (the aircar) relative to the rest 
position as a function of time: 
 

0( ) cos( ).x t A tω ϕ= +  
 
Here A is the maximum displacement, and is called the amplitude of the motion. 0tω ϕ+  is 
called the phase.  ϕ  is called the phase constant: it depends on where in the cycle you start, that 
is, where is the oscillator at time zero. 
 
The velocity and acceleration are given by differentiating x(t) once and twice: 
 

0 0( ) sin( )dxv t A t
dt

ω ω ϕ= = − +
 

and 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/ComplexNumbersSHO.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/OscWavesIndex.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Pendulum.pdf
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0 02

( )( ) cos( ).d x ta t A t
dt

ω ω ϕ= = − +
 

We see immediately that this x(t) does indeed satisfy Newton’s Law provided 0ω  is given by 
  

0 / .k mω =  
 
Exercise: Verify that, apart from a possible overall constant, this expression for 0ω  could have 
been figured out using dimensions. 

Energy 
The spring stores potential energy: if you push one end of the spring from some positive 
extension x to x + dx (with the other end of the spring fixed, of course) the force – kx opposes the 
motion, so you must push with force + kx, and therefore do work kxdx.  To find the total 
potential energy stored by the spring when the end is x0 away from the equilibrium point (natural 
length) we must find the total work required to stretch the spring from its natural length to an 
extension x0.  This means adding up all the little bits of work kxdx needed to get the spring from 
no extension at all to an extension of x0.  In other words, we need to do an integral to find the 
potential energy U(x0): 

0
21

0 02
0

( )
x

U x kxdx kx= =∫ .  

So the potential energy plotted as a function of distance from equilibrium is parabolic: 
 

U(x) 

( )

 

21
2U x kx=  

x A=  x A= −  

Total Energy E 

x 

Potential Energy U(x) for a Simple Harmonic Oscillator. 
For total energy E, the oscillator swings back and forth  
between x = –A and x = +A. 
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The oscillator has total energy equal to kinetic energy + potential energy,  
 

2 21 1
2 2E mv kx= +  

 
when the mass is at position x.  Putting in the values of x(t), v(t)  from the equations above, it is 
easy to check that E is independent of time and equal to 21

2 k A , A being the amplitude of the 
motion, the maximum displacement.  Of course, when the oscillator is at A, it is momentarily at 
rest, so has no kinetic energy. 

A Heavily Damped Oscillator 
Suppose now the motion is damped, with a drag force proportional to velocity.  The equation of 
motion becomes: 
 

2

2 .d x dxm kx b
dt dt

= − −
 

 
Although this equation looks more difficult, it really isn’t!  The important point is that the terms 
are just derivatives of x with respect to time, multiplied by constants. It would be a lot more 
difficult if we had a drag force proportional to the square of the velocity, or if the force exerted 
by the spring were not a constant times x (this means we can’t stretch the string too far!).  
Anyway, it is easy to find exponential functions that are solutions to this equation.  Let us guess 
a solution: 
 

0 .tx x e α−=  
Inserting this in the equation, using  
 

2
2

0 02,    t tdx d xx e x
dt dt

eα αα α− −= − =
 

 
 
we find that it is a solution provided that α  satisfies: 
 

2 0m b kα α− + =  
 
from which 
 

2 4 .
2

b b mk
m

α ± −
=

 
 
Staring at this expression for α , we notice that for α  to be real, we need to have 
 

2 4 .b m> k  
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What can that mean?  Remember b is the damping parameter—we’re finding that our proposed 
exponential solution only works for large damping!  Let’s analyze the large damping case now, 
then after that we’ll go on to see how to extend the solution to small damping.  
 

Interpreting the Two Different Exponential Solutions 
It’s worth looking at the case of very large damping, where the two exponential solutions turn 
out to decay at very different rates.  For b2 much greater than 4mk, we can write  
 

2

1 2

41
,

2

mkb b
b

m
α α α

± −
= =

 
 

and then expand the square root using  
1/ 2 1

2(1 ) 1 ,x x− ≅ −  
 
valid for small x, to find that approximately—for large b—the two possible values of α  are: 
  

1 2  and   .b k
m b

α α= =  

 
That is to say, there are two possible highly damped decay modes, 
 

1 2
1 2 and .t tx A e x A eα α− −= =  

 
Note that since the damping b is large, 1α  is large, meaning fast decay, and 2α  is small, 
meaning slow decay.  
 
Question: what, physically, is going on in these two different highly damped exponential decays?  
Can you construct a plausible scenario of a mass on a spring, all in molasses, to see why two 
very different rates of change of speed are possible? 
 
Hint: look again at the equation of motion of this damped oscillator.  Notice that in each of these 
highly damped decays, one term doesn’t play any part—but the irrelevant term is a different term 
for the two decays! 
 
Answer 1: for /k bα = , evidently the mass doesn’t play a role.  This decay is what you get if you 
pull the mass to one side, let go, then, after it gets moving, it will very slowly settle towards the 
equilibrium point.  Its rate of approach is determined by balancing the spring’s force against the 
speed-dependent damping force, to give the speed.  The rate of change of speed—the 
acceleration—is so tiny that the inertial term—the mass—is negligible.  
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Answer 2: for /b mα = , the spring is negligible. And, this is very fast motion (b/m >> k/b, since 
we said b2 >> 4mk.)  The way to get this motion is to pull the mass to one side, then give it a very 
strong kick towards the equilibrium point.  If you give it just the right (high) speed, all the 
momentum you imparted will be spent overcoming the damping force as the mass moves to the 
center—the force of the spring will be negligible. 

*The Most General Solution for the Highly Damped Oscillator 
The damped oscillator equation 
 

2

2

d x dxm kx b
dt dt

= − −
 

 
is a linear equation. This means that if x1(t) is a solution, and x2(t) is another solution, that is,  
 

2
1 1

12

2
2 2

22

( ) ( )( )

( ) ( )( )

d x t dx tm kx t b
dt dt

d x t dx tm kx t b
dt dt

= − −

= − −
 

 
then just adding the two equations we get: 
 

2
1 2 1 2

1 22

( ( ) ( )) ( ( ) ( ))( ( ) ( )) .d x t x t d x t x tm k x t x t b
dt dt
+ +

= − + −
 

 
 

It is also clear that multiplying a solution by a constant produces another solution: if x(t) satisfies 
the equation, so does 3x(t).  
 
This means, then, that given two solutions x1(t) and x2(t), and two arbitrary constants A1 and A2, 
the function  
 

A1x1(t) + A2x2(t) 
 

is also a solution of the differential equation. 
 
In fact, all possible motions of the highly damped oscillator have this form. The way to 
understand this is to realize that the oscillator’s motion is completely determined if we specify at 
an initial instant of time both the position and the velocity of the oscillator.  The equation of 
motion gives the acceleration as a function of position and velocity, so, at least in principle,  we 
can work out step by step how the mass must move; technically, we are integrating the equation 
of motion, either mathematically, or numerically such as by using a spreadsheet. So, by suitably 
adjusting the two arbitrary constants A1 and A2, we can match our sum of solutions to any given 
initial position and velocity.  
 
To summarize, for the highly damped oscillator any solution is of the form:  
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2 2

1 2

4 41 1

2 2
1 2 1 2( ) .

mk mkb b b b
b bt tt t m mx t A e A e A e A eα α

+ − − −
− −− −= + = +  

 
Exercises on highly damped oscillations 
 
1.  If the oscillator is pulled aside a distance x0, and released from rest at t = 0, what are A1, A2?   
Describe the subsequent motion, especially the very beginning: what is the initial acceleration?  
(Hint: think carefully about how important the damping term is immediately after release from 
rest—you should be able to guess the initial acceleration.) 
 
2. If the oscillator is initially at the equilibrium position x0 = 0, but is given a kick to a velocity 
v0, find A1 and A2 and describe the subsequent motion.  

*The Principle of Superposition for Linear Differential Equations 
The equation for the highly damped oscillator is a linear differential equation, that is, an equation 
of the form (in more usual notation): 
 

2

0 1 2 2

( ) ( )( ) 0df x d f xc f x c c
dx dx

+ + =
 

 
where c0, c1 and c2 are constants, that is, independent of x.  
 
For such a linear differential equation, if f1(x) and f2(x) are solutions, so is A1f1(x) +A2f2(x) for any 
constants A1, A2. This is called the Principle of Superposition, and is proved in general exactly 
as we proved it for the highly damped oscillator in the preceding section. 
 
Even more important, this Principle of Superposition is valid, using analogous arguments, for 
linear differential equations in more than one variable, such as the wave equations we shall be 
considering shortly.  In that case, it gives insight into how waves can pass through each other and 
emerge unchanged. 

A Lightly Damped Oscillator 
We can go through exactly the same mathematical steps in solving the equation of motion as we 
did for the heavily damped case: we look for solutions of the form  
 

0
tx x e α−=  

  
and as before we find there are solutions with  
 

2

1 2
4, .

2
b b mk

m
α α ± −

=
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But the difference is that for light damping, by which we mean b2 < 4mk, the expression inside 
the square root is negative!  We are going to have to work with the square root of a negative 
number.  We do this formally by writing: 
 

2 24 4b mk i mk b− = −  
 
with i2 = −1 as usual. This gives the two possible exponential solutions: 
 

2 24 4
2 2 2 2

1 2( ) ,    ( ) .
bt i mk b bt i mk bt t
m m m mx t e e x t e e

− −
− − − +

= =  
and a general solution  
 
 

2 24 4
2 2 2 2

1 2( ) .
bt i mk b bt i mk bt t
m m m mx t A e e A e e

− −
− − − +

= +  

 
 

Of course, the position of the mass x(t) has to be a real number!  We must choose A1 and A2 to 
make sure this is so. If we choose 
 

1 1
1 22 2,i iA Ae A Aeδ δ− += =  

 
where A and δ  are real, and remembering  

1
2cos ( ),i ie eθ θθ + −= +  

 
we find  
 

2
2 4( ) cos .

2

bt
m mk bx t Ae t

m
δ

− ⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠  
 
 

This is the most general real solution of the lightly damped oscillator—the two arbitrary 
constants are the amplitude A and the phase δ .   So for small b, we get a cosine oscillation 
multiplied by a gradually decreasing function, e−bt/2m.   
 
This is often written in terms of a decay time τ  defined by  
 

/ .m bτ =  
 

The amplitude of oscillation A  therefore decays in time as / 2te τ− , and the energy of the oscillator 
(proportional to A2) decays as / .te τ−   This means that in timeτ  the energy is down by a factor 
1/e, with e = 2.71828… 
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The solution is sometimes written 
 

( )2( ) cos
bt
mx t Ae tω δ

−
′= +  

 
where 

 
2 2

2 2
02 2

4 .
4 4

mk b k b b
m m m m

ω ω−′ = = − = −
2

24
 

 
Notice that for small damping, the oscillation frequency doesn’t change much from the 
undamped value: the change is proportional to the square of the damping. 

The Q Factor 
The Q factor is a measure of the “quality” of an oscillator (such as a bell): how long will it keep 
ringing once you hit it?  Essentially, it is a measure of how many oscillations take place during 
the time the energy decays by the factor of 1/e.  
 
Q is defined by: 

0Q ω τ=  
 

so, strictly speaking, it measures how many radians the oscillator goes around in time τ .  For a 
typical bell, τ  would be a few seconds, if the note is middle C, 256 Hz, that’s 0 2 256,ω π= ×  so 
Q would be of order a few thousand.  
 
Exercise: estimate Q for the following oscillator (and don’t forget the energy is proportional to 
the square of the amplitude): 

Damped Oscillator

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

 
The yellow curves in the graph above are the pair of functions +e−bt/2m, − e−bt/2m, often referred to 
as the envelope of the oscillation curve, as they “envelope” it from above and below. 
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*Critical Damping 
There is just one case we haven’t really discussed, and it’s called “critical damping”: what 
happens when b2 – 4mk is exactly zero?  At first glance, that sounds easy to answer: there’s just 
the one solution  

2( ) .
bt
mx t Ae

−
=  

 
But that’s not good enough—it tells us that if we begin at t = 0 with the mass at x0, it must have 
velocity dx/dt equal to −x0b/2m.  But, in fact, we can put the mass at x0 and kick it to any initial 
velocity we want!  So what happened to the other solution? 
 
We can get a clue by examining the two exponentially falling solutions for the overdamped case 
as we approach critical damping: 
 

2 2
4 41 1

2 2
1 2( )

mk mkb b b b
b bt t

m mx t A e A e
+ − − −

− −
= +  

 
As we approach critical damping, the small quantity 
  

2 4
2

b m
m

ε −
=

k
 

 
approaches zero.  The general solution to the equation has the form  
 

2
1 2( ) ( ).

bt
t tmx t e A e A eε ε− − += +  

 
This is a valid solution for any real A1, A2.  To find the solution we’re missing, the trick is to take 

  In the limit of small 2 .A A= − 1 ε , we can take 1 ,teε tε= +  and we discover the solution 
 

2( ) 2 .
bt
mx t e tε

−
= −  

 
As usual, we can always multiply a solution of a linear differential equation by a constant and 
still have a solution, so we write our new solution as 
 

2
2( ) .

bt
mx t A te

−
=  

 
The general solution to the critically damped oscillator then has the form: 
 

2
1 2( ) ( ) .

bt
mx t A A t e

−
= +  

 
Exercise: check that this is a solution for the critical damping case, and verify that solutions of 
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the form t times an exponential don’t work for the other (noncritical damping) cases. 

Shock Absorbers and Critical Damping 
A shock absorber is basically a damped spring oscillator, the damping is from a piston moving in 
a cylinder filled with oil.  Obviously, if the oil is very thin, there won’t be much damping, a 
pothole will cause your car to bounce up and down a few times, and shake you up.  On the other 
hand, if the oil is really thick, or the piston too tight, the shock absorber will be too stiff—it 
won’t absorb the shock, and you will!  So we need to tune the damping so that the car responds 
smoothly to a bump in the road, but doesn’t continue to bounce after the bump.  
 
Clearly, the “Damped Oscillator” graph in the Q-factor section above corresponds to too little 
damping for comfort from a shock absorber point of view, such an oscillator is said to be 
underdamped.  The opposite case, overdamping, looks like this: 

Overdamped Oscillator

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

 
 
The dividing line between overdamping and underdamping is called critical damping.  Keeping 
everything constant except the damping force from the graph above, critical damping looks like: 
 

Critically Damped Oscillator

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

 
This corresponds to 0ω′ =  in the equation for x(t) above, so it is a purely exponential curve. 
Notice that the oscillator moves more quickly to zero than in the overdamped (stiff oil) case.  
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You might think that critical damping is the best solution for a shock absorber, but actually a 
little less damping might give a better ride: there would be a slight amount of bouncing, but a 
quicker response, like this: 

Slightly Underdamped Oscillator

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

 
 

You can find out how your shock absorbers behave by pressing down one corner of the car and 
then letting go.  If the car clearly bounces around, the damping is too little, and you need new 
shocks.  

A Driven Damped Oscillator: the Equation of Motion 
We are now ready to examine a very important case: the driven damped oscillator.  By this, we 
mean a damped oscillator as analyzed above, but with a periodic external force driving it.  If the 
driving force has the same period as the oscillator, the amplitude can increase, perhaps to 
disastrous proportions, as in the famous case of the Tacoma Narrows Bridge.  
 
The equation of motion for the driven damped oscillator is: 
 

2

02 cos .d x dxm b kx F
dt dt

tω+ + =
 

 
We shall be usingω for the frequency of the driving force, and 0ω  for the natural frequency of the 

oscillator if the damping term is ignored, 0 / .k mω =  
 

The Steady State Solution and Initial Transient Behavior 
The solution to this differential equation is not unique: as with any second order differential 
equation, there are two constants of integration, which are determined by specifying the initial 
position and velocity.   
 
However, as we shall prove below using complex numbers, the equation does have a unique 
steady state solution with x oscillating at the same frequency as the external drive.  How can that 
be fitted to arbitrary initial conditions?  The key is that we can add to the steady state solution 

http://www.civeng.carleton.ca/Exhibits/Tacoma_Narrows/TacomaNarrowsBridge.mpg
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any solution of the undriven equation  
2

2 0,d x dxm b kx
dt dt

+ + =  and we’ll clearly still have a 

solution of the full damped driven equation.  We know what those undriven solutions look like: 
they all die away as time goes on.  So, we can add such a solution to fit the specified initial 
conditions, and after a while the system will lose memory of those conditions and settle into the 
steady driven solution. The initial deviations from the steady solution needed to satisfy initial 
conditions are termed transients. 
 
Here’s a pair of examples: the same driven damped oscillator, started with zero velocity, once 
from the origin and once from 0.5: 
 

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

 

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

 
 

Notice that after about 70 seconds, the two curves are the same, both in amplitude and phase. 

Using Complex Numbers to Solve the Steady State Equation Easily 
We begin by writing:  
 

external driving force = 0
i tF e ω  

 
with F0 real, so the real driving force is just the real part of this, 0 cosF tω . 
So now we’re trying to solve the equation 
 

2

02 .i td x dxm b kx F e
dt dt

ω+ + =  
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We’ll try the complex function, (( ) i tx t Ae )ω ϕ+= , with A a real number, x(t) cycling at the same 
rate as the driving force.  We can always take the amplitude A to be real: that is not a restriction, 
since we’ve added the adjustable phase factor ie ϕ .  Physically, this factor allows the solution to 
lag the driver in phase, as indeed we shall find to be the case.  If we succeed in finding an x(t) 
that satisfies the equation, the real parts of the two sides of the equation must be equal:  
 

( )( ) i tx t Ae ω ϕ+= 0 ,i tIf  is a solution to the equation with the complex driving force, F e ω  its real 
part, ( )cos ,A tω ϕ+ 0 cosF twill be a solution to the equation with the real driving force, . ω
 
It’s very easy to check that ( ) ( )i tx t Ae ω ϕ+=  is a solution to the equation, with the right A and ϕ !  
Just plug it in and see what happens.  The differentiations are simple, giving 
 

( ) ( ) ( )2
0 .i t i t i t i tm Ae ib Ae kAe F eω ϕ ω ϕ ω ϕ ωω ω+ + +− + + =  

 
To nail down A and ϕ , we begin by cancelling out the common factor i te ω  , then shifting the 

ie ϕ to the other side, to find 
 

0
2

iF eA
k m ib

ϕ

ω ω

−

=
− +  

 
Now A is a real number, and the right hand 
side of this equation looks alarmingly 
complex, so what’s going on? 

2 2 2( ) (r k m b )ω ω= − +  
 

ibω Let’s begin to untangle this by diagramming 
that complex number in the denominator,  
 

2k m ibω ω− + . 
 
It has real part 2k mω−  and imaginary part 
ibω .   
 ( )2 2

0k m m

1
2tan b

k m
ωθ
ω

− ⎛ ⎞= ⎜ ⎟−⎝ ⎠

2ω ω ω− = −  Its phase is the angleθ : that is, 
 The complex number 2k m ibω ω− +  2 ik m ib re θω ω− + = . 
 

Putting it in the equation in this ,r θ  notation gives 
 

( )0 0 0
2 .

i i
i

i

F e F e FA e
k m ib re r

ϕ ϕ
ϕ θ

θω ω

− −
− += = =

− +
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Now, remembering that F0 and r are real, we see that A will be real (as it must be) if (ie )ϕ θ− +  is 
real: so ,ϕ θ= − and  
 

( ) ( )0 0
2 2 2 2 2

0

, ,
( ) ( )

i tF FA x
r m b

t Ae ω θ

ω ω ω
−= = =

− +
 

 

where we’ve written 2
0k mω= . 

 
So we’ve already solved the differential equation: the amplitude A is proportional to the strength 
of the driving force, and that ratio is determined by the parameters of the undriven oscillator, and 
the driving oscillation frequency. 
 
The important thing to note about the amplitude A is that if the damping b is small, A gets very 
large when the frequency of the driver approaches the natural frequency of the oscillator!  This is 
called resonance, and is what happened to the Tacoma Narrows Bridge. Of course, it has its 
positive aspects, from getting a swing going to tuning a radio. 
 
The phase lag of the oscillations behind the driver, ( )( )1tan /b k mθ ω−= − 2ω , is completely 

determined by the frequency together with the physical constants of the undriven oscillator: the 
mass, spring constant, and damping strength.  So, when the driving force 0

i tF e ω generates the 

motion ( ) ( ) ( )i t i tx t Ae Aeω ϕ ω+= = θ− ,  the lag angle θ  is independent of the strength of the driving 
force: a stronger force doesn’t get the oscillator more in sync, it just increases the amplitude of 
the oscillations. 
 
Note that at low frequencies, 0 ,ω ω  the oscillator lags behind by a small angle, but at 
resonance 0 / 2,ω ω θ π= =  and for driving frequencies above 0ω , / 2.θ π>  

Back to Reality 

To summarize: we’ve just established that ( ) ( )i tx t Ae ω θ−=   with 2 2 2 2 2
0 0/ ( ) ( )A F m bω ω ω= − +  

and  is a solution to the driven damped oscillator equation ((1tan /b k mθ ω−= − ))2ω
2

02
i td x dxm b kx F e

dt dt
ω+ + =  

 
with the complex driving force 0

i tF e ω . 
 
So, equating the real parts of the two sides of the equation, since m, b, k are all real, 
 

( )cosx A tω θ= −  
 

is a solution of the equation with the real driving force 0 cosF tω . 
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We could have found this out without complex numbers, by using a trial solution ( )cosA tω ϕ+ .  
However, it’s not that easy—the left hand side becomes a mix of sines and cosines, and one 
needs to use trig identities to sort it all out.  With a little practice, the complex method is easier 
and is certainly more direct. 
 
Now the total energy of the oscillator is 
 

2 21 1
2 2

2 21 1
02 2 .

E mv kx

mv m xω

= +

= + 2
 

Putting in 
 ( ) ( ) ( ) ( )cos , sinx t A t v t A tω θ ω= − = − ω θ−  
gives 
 ( ) ( )( )2 2 2 2 21

02 sin cos .E mA t tω ω θ ω ω θ= − + −  
 
Note that this is not constant through the cycle unless the oscillator is at resonance, 0.ω ω=  

 

We can see from the above that at the resonant frequency, 2 21
02E m Aω= , and from the section 

above 
0

2 2 2 2 2
0

,
( ) (

FA
m bω ω ω

=
− + )

 

 
so the energy in the oscillator at the resonant frequency is 
 

2 2 2
2 2 2 0 01 1 1

resonance 0 02 2 22 2 2 2
0 0

,
2

F F FQE m A m m
b b m

ω ω
2

0

ω ω
= = = =  

 
recalling that 0 0 / .Q m bω τ ω= =  
 
So Q, the quality factor, the measure of how long an oscillator keeps ringing, also measures the 
strength of response of the oscillator to an external driver at the resonant frequency. 
 
But what happens on going away from the resonant frequency?  Let’s assume that Q is large, and 
the driving force is kept constant.  It won’t take much change inω from 0ω  for the denominator 

2 2 2 2
0( ) (m 2)bω ω− + ω  in the expression for E to double in size.  In fact, for large Q, it’s a good 

approximation to replace bω  by 0bω over that variation, and it is then straightforward to check 
that the energy in the oscillator drops to one-half its resonant value for 0 0 / 2 .Qω ω ω− ≅ ±  
 
Exercise: prove this. 
 
The bottom line is that for increasing Q, the response at the resonant frequency gets larger, but 
this large response takes place over a narrower and narrower range in driving frequencies.  
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And Now to Work… 
An important practical question is: how much work is the driver doing to keep this thing going? 
 
It’s simplest to work with the real solution.  Suppose the oscillator moves through xΔ  in a time 

, the driving force does work tΔ ( )0 cosF tω xΔ , so  
 

( )( ) ( ) ( )0 0rate of working at time   cos / cost F t x t F t vω ω= Δ Δ = t  
 
The important thing is the average rate of working of the driving force, the mean power input, 
found by averaging over a complete cycle: 
 
From ( ) cos( )x t A tω θ= − , ( ) ( )sinv t A tω ω θ= − − , averaging the power input (the bar above 
means average over a complete cycle) and denoting average power by P, 
 

( ) ( )
( )

0

0

2
0 0

1
02

cos

cos sin

cos sin cos cos sin
sin

P F t v t

F A t t

F A t t F A t
F A

ω

ω ω ω θ

ω ω ω θ ω ω
ω θ

=

= − −

= − +

=

θ
 

 
since over one cycle the average  2 1

2cos tω =  and 1
2cos sin sin 2 0t t tω ω ω= =  (Remembering 

at all times, and sine is just cosine moved over, so they must have the same 
average over a complete cycle.) 

2 2cos sin 1t tω ω+ =

 
This can be expressed entirely in terms of the driving force and frequency.  Since 
 

0
2 2 2 2 2 2 2 2 2 2

0 0

, sin ,
( ) ( ) ( ) (

F bA
m b m b )

ωθ
ω ω ω ω ω ω

= =
− + − +

 

 
1

02
2 2

0
2 2 2 2 2

0

sin

1
2 ( ) ( )

P F A

b F
m b

ω θ

ω
ω ω ω

=

=
− +

 

 
Exercise 1: Prove that for a lightly damped oscillator, at resonance the oscillator extracts the 
most work from the driving force.  
 
Exercise 2: Prove that any solution of the damped oscillator equation (with F = 0) can be added 
to the driven oscillator solution, and gives another solution to the driven oscillator. How do you 
pick the “right solution”? 
 
previous   index   next 
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