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Stokes’ Law and the Coffee Filters 
Michael Fowler, UVa  6/12/06 

A Problem 
We found that Stokes’ Law, which we derived in the form  
 

dragF Ca vη=  
 
from purely dimensional considerations (Stokes did the hard part of proving that 6C π= ) 
correctly predicted that for two small steel balls, one having a radius exactly twice the other, the 
bigger one would fall through a fluid four times faster (it had eight times the weight, and twice 
the drag force for the same velocity, and the drag force is proportional to the velocity).  
 
Now let us ask what Stokes’ Law predicts for the following coffee filter experiment:  
 
If we drop a single coffee filter, it reaches a terminal velocity of about 0.8 meters per sec after 
falling less than a meter.  If we drop a stack of four close packed filters, the terminal velocity 
clocks in at about 1.6 meters per sec.  
 

 
 

That is to say, the stack of four filters has a terminal velocity twice that of a single filter.  Now at 
terminal velocity the drag force is exactly balancing the weight of the object falling.  The stack 
of four filters is almost indistinguishable in shape and size from the single filter, so it’s difficult 
to believe there’s any significant difference in the air flow pattern round the falling filters for the 
same speed.  Therefore the Stokes’ drag from the air friction should be the same Ca vη  for both.  
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(We can’t say 6C π= , that was derived for a falling sphere, but the dimensional argument 
should still be working.)  Yet this implies that the terminal velocity of the stack of four filters 
should be four times the terminal velocity of the single filter!   
 
What is wrong with our dimensional analysis?  It worked brilliantly for the little steel balls, but 
seems to have flunked the coffee filter test. In what respect are these two experiments different? 

Another Kind of Drag Force 
Perhaps the best way to see what is wrong is to do the steel ball experiment on a completely 
different scale.  Let us imagine dropping a cannonball from an airplane.  This will also reach a 
terminal velocity, but at hundreds of miles an hour.  However, in contrast to the steel balls in 
glycerin experiment, it turns out that this time the viscous drag is not the important effect.  At 
high speeds, most of the work done by the falling body is in just pushing the air out of the way. 
 
Let us estimate how much force the cannonball exerts on the air pushing it out of its path. 
Suppose the cannonball is falling at steady speed v, and it has radius a. Then it has to move aside 
a volume  of air per second, and this air will be moved at a speed of order of magnitude v. 
Therefore, the rate at which the cannonball imparts momentum to the air (which was previously 
at rest) is of order  per second.  But the rate of change of momentum per second is just 
the force, so the cannonball is pushing the air with a force of order .  By Newton’s Third 
Law, Action = Reaction, this is also the drag force the cannonball experiences as it falls at v.  

2a vπ

2 2a vπρ
2 2a vπρ

 
Exercise: Assuming the drag force depends only on v, a, and the density of air ρ, use a 
dimensional argument to show it must have this form.  

So What is the Real Drag Force? 
Using purely dimensional considerations, we have derived two quite different formulas for the 
drag force on a sphere falling through a fluid: 
 
Viscous drag force: 

viscousF Ca vη=  
and inertial drag force:  

2 2
inertial .F C a vρ′=  

 
We call the second “inertial” because it arises from just pushing the still air out of the way, and 
would be the same if the air had no viscosity at all. 
 
The truth is that the two different derivations we have presented above for these two different 
drag forces are both too simple. In fact, in real situations, both types of forces are present.  This 
does not mean, though, that we can simply add the forces with suitable coefficients—the general 
situation is far more complicated.  However, it can be described mathematically by a 
complicated differential equation, the Navier-Stokes equation.  The good news is that the 
solutions to this equation for a given flow configuration, such as flow past a sphere, or flow past 
a wing, can be classified in terms of a single dimensionless parameter, the Reynolds number.  
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The Reynolds number is just the ratio of the inertial drag to the viscous drag: 
 

R 2 /N a v .ρ η=  
 
The factor of 2 is the standard definition of the Reynolds number—this is just a matter of 
convention, it is of course not fixed by the dimensional arguments.  And the Reynolds number is 
dimensionless: it’s the ratio of two forces, so will be the same in any system of units! 
 
The theoretical prediction from the Navier-Stokes equation that the flow pattern in a given 
geometry depends only on the Reynolds number is well established experimentally, and makes it 
possible to find how air flows around an airplane in flight by testing a scale model in a wind 
tunnel, adjusting wind speed to get the same Reynolds number.  
 
Stokes’ Law for a falling sphere is found experimentally to be reasonably accurate for NR less 
than or of order 1.  
 
Reference:  The derivation of Stokes’ Law (the 6π ) can be found, for example, in G. K. 
Batchelor,  An Introduction to Fluid Dynamics, Cambridge, 1967, 2000.   
 

previous   index   next  
 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Stokes_Law.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/FluidsIndex.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Exponential_Function.pdf

	previous   index   next 
	Stokes’ Law and the Coffee Filters
	A Problem
	Another Kind of Drag Force
	So What is the Real Drag Force?

	previous   index   next 

