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Sound Waves 
Michael Fowler 3/23/07 

“One-Dimensional” Sound Waves 
We’ll begin by considering sound traveling down a hollow pipe, to avoid unnecessary 
mathematical complications. Sound is a longitudinal wave—as the wave passes through, the air 
moves backwards and forwards in the pipe, this oscillatory movement is in the same direction the 
wave is traveling.  
 
To visualize what’s happening, imagine mentally dividing the air in the pipe, which is at rest if 
there is no sound, into a stack of thin slices.  Think about one of these slices. In equilibrium, it 
feels equal and opposite pressure from the gas on its two sides.  (This is analogous to the little bit 
of string at rest feeling equal and opposite tension on its two sides, but of course the gas pressure 
is inward).  As the sound wave goes through, the pressure wave generates slight differences in 
pressure on the two sides of our thin slice of air, and this imbalance of forces causes the slice to 
accelerate. 
 
To analyze this quantitatively—to apply F ma=  to the thin slice of air—we must begin by 
defining displacement, the quantity corresponding to the string’s transverse movement ( ),y x t . 

We shall use ( ),s x t  to denote the horizontal (along the pipe) displacement of the thin slice of air 
which rests at position x when no sound is present.  
 

.  
 

An animated version of this diagram is available here! 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Boundary%20Conditions.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/OscWavesIndex.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Waves2D_3D.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Particle%20Wave.swf
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If the pipe has radius a, and hence cross-sectional area 2aπ , a slice of air of thickness xΔ  has 
volume , so writing the density of air 2a xπ Δ ρ  (1.29 kg/m3), the mass of the slice of air is 

.  Clearly, its acceleration is 2m V aρ ρπ= = Δx ( )2 , /a s x t 2t= ∂ ∂ , so we already have the right-

hand side of .  To find the left hand side—the force on the thin slice of air—we must 
find the pressure imbalance between the two sides. 

F ma=

Relating Pressure Change to How the Displacement Varies 
The pressure change as  the sound wave moves down the tube is directly tied to the local 
compression or expansion of the gas.  It’s like a spring: as the gas is compressed into a smaller 
volume, its pressure rises, and as the gas expands the pressure drops.  And, exactly as for a 
spring, the changes in pressure and volume are linearly related.  The coefficient of 
proportionality is called the bulk modulus, usually written B, and defined by the equation: 
 

Vp B
V
Δ

Δ = −  

 
Note the sign!  As the volume decreases, the pressure increases.  Since the ratio of volumes is 
dimensionless, the units for the bulk modulus are the same as for pressure: Pascals.  For air at 
standard temperature and pressure, the bulk modulus B = 105 Pa. 
 
Now, we are tracking the motion of the gas as the sound wave passes through by following the 
parameter the displacement along the tube at time t of gas having equilibrium position x.  

Obviously, if 
( ), ,s x t

( ),s x t  does not depend on x, all the gas is shifted by the same amount, and no 
compression or expansion has taken place.  Local change in volume only happens if there is local 
variation in . ( ),s x t
 
To make this quantitative, consider a slice of gas having thickness xΔ (when at rest):  if, at some 
instant when the sound wave is passing through, the right-hand end is displaced by , 

and the left-hand end by a greater amount
( ),s x x t+ Δ

( ),s x t , say, 
 

xΔ  (length at rest) 

 
 
the thickness of the slice has evidently been changed from xΔ  to 
 

( ) ( )( ), , .x s x t s x x tΔ − − + Δ  
 

( ),s x t ( ),s x x t+ Δ  
length at time t 

Compression of a thin “slice” of air resulting from different displacements at the two ends
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Since the volume of air in the slice is directly proportional to its thickness, the sound wave has at 
this instant changed the volume of the air initially in the segment xΔ near the point x by a 
fraction 

( ) ( ) ( ), ,s x x t s x t s x tV
V x

+ Δ − ∂Δ
= =

Δ ∂
,

x
 

 
the differential being exact in the limit of a thin slice.   
 
Therefore, the local extra pressure is directly proportional to minus the gradient of : ( ),s x t
  

( , )V s xp B B
V x

tΔ ∂
Δ = − = −

∂
. 

From F = ma  to the Wave Equation 
Having found how the local pressure variation relates to ( ),s x t , we’re ready to derive the wave 

equation from F = ma for a thin slice of gas.  Recall that for such a slice , and 
of course . 

2m V aρ ρπ= = Δx
( )2 2, /a s x t t= ∂ ∂

 
The net force F on the slice is the difference between the pressure at x and that at x x+Δ :  
 
 

2
2 2 2 2 2

2

( , ) ( , ) ( , )( , ) ( , ) s x t s x x t s x tF p x t a p x x t a a B a B a B x
x x

π π π π π∂ ∂ + Δ ∂
= − + Δ = − + = Δ

∂ ∂ x∂
. 

 
Putting this into F = ma: 
 

2 2

2 2 2

( , ) 1 ( , ) , where s x t s x t Bv
x v t ρ

∂ ∂
= =

∂ ∂
 

 
This is exactly the wave equation we found for the string, with now the longitudinal 
displacement s replacing the transverse displacement y, and the bulk modulus playing the role of 
the string tension, both being measures of stored potential energy arising from local variations in 
displacement.  The densities, of course, play the same role in the two cases, measuring how 
much kinetic energy is stored for given local displacement velocities.   

Boundary Conditions for Sound Waves in Pipes 
Since the new wave equation is identical in form to that for waves on a string, our discussion of 
traveling waves, standing waves, etc., for a string can be carried over with the appropriate 
changes of notation and applied here.  
 
For example, a standing wave in a pipe has the form ( ), sin sins x t A kx tω= , this would be for a 
pipe closed at x = 0, so that the air doesn’t move at x = 0.  
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The boundary condition for a closed end of a pipe is: 
 

( ), 0 at a closed end.s x t =  
 
What about an open end?  In that case, the air is free to move—the boundary condition won’t be 

 However, the pressure is not free to vary: it’s atmospheric pressure, the pipe being 

open to the atmosphere.  So at an open end 
( ),s x t = 0.

0.pΔ =   Remembering that  ( ), / ,p B s x t xΔ = − ∂ ∂  the 
boundary condition is: 

( ),
0 at an open end.

s x t
x

∂
=

∂
 

 
 

Harmonic Standing Waves in Pipes 
Consider now a standing harmonic wave in a pipe of length L, closed at x = 0 but open at x = L. 
 
From the x = 0 boundary condition, the wave must have the form  ( ), sin sins x t A kx tω= .   
 
The x = L open end boundary condition requires that the slope ( ), / 0.s L t x∂ ∂ =  
That is, cos  0.kL =
 
Exercise: Prove that the longest wavelength standing wave possible in the pipe has wavelength 
4L, and sketch the wave. 
 
Exercise: what is the next longest wavelength of a possible standing wave in the pipe?  Draw a 
picture.  

Traveling Waves: Power and Intensity 
Another solution to the wave equation is  
 

( ) ( ), sins x t A kx tω= −  
 
where vkω = ,  just as for string.  This is a wave traveling down the pipe.  It could be generated 
by an oscillating plate at the closed end:  in other words, a speaker. 
 
How much power is this speaker putting out?  It’s moving and pushing against the pressure:   
 

Power = P = rate of working = force x velocity = pressure x area x velocity 
 

How fast is it moving?  At time t, the plate is at 
 

( )0, sin ,s x t A tω= = −  
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so it is moving at velocity 
 

( ) ( )0,
cos .plate

s x t
v t A

t
tω ω

∂ =
= = −

∂
 

 
The pressure at the plate is where pΔ
 

( )( , ) sin coss x tp B B A kx t ABk t
x x

ω ω∂ ∂
Δ = − = − − = −

∂ ∂
 

 
at x = 0. 
 
So the rate of working at time t, the power P(t)  = velocity x force: 
 

( ) ( ) 2 2 2 2cosplateP t v t p a A B a k tπ π ω ω= Δ =  
 
The standard definition of power for any kind of wave generator is the average power over a 
complete cycle.   
 
Since the average value of cos2x = ½,    
 

2 21
2power  P A B a kπ ω= . 

 
Using 2B v ρ=  and vkω = , this can be written  
 

2 2 21
2 .P A a vπ ω ρ=  

 
This also tells us how much energy there is in the wave as it travels:  
 

2 2 21
2 A aπ ω ρ  per meter. 

 
The intensity of the wave is average power per square meter of cross sectional area, so here  
 

2 21
2Intensity  I A vω ρ=  

 
and I is measures in watts per square meter.   
 
The factor v, the velocity, in the above expression comes about because in one second, the 
energy delivered by a steady sound wave to one square meter of area perpendicular to the 
direction of the wave’s motion is the energy in v cubic meters of wave: taking the speed of sound 
to be 330 meters per second, 330 cubic meters of sound energy will plough into one square meter 
each second. 
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