
previous   index   next 

Waves in Two and Three Dimensions 
6/2/08  Michael Fowler 

Introduction 
So far, we’ve looked at waves in one dimension, traveling along a string or sound waves going 
down a narrow tube.  But waves in higher dimensions than one are very familiar—water waves 
on the surface of a pond, or sound waves moving out from a source in three dimensions.   
 
It is pleasant to find that these waves in higher dimensions satisfy wave equations which are a 
very natural extension of the one we found for a string, and—very important—they also satisfy 
the Principle of Superposition, in other words, if waves meet, you just add the contribution from 
each wave.  In the next two paragraphs, we go into more detail, but this Principle of 
Superposition is the crucial lesson. 

The Wave Equation and Superposition in One Dimension 
For waves on a string, we found Newton’s laws applied to one bit of string gave a differential 
wave equation,  
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and it turned out that sound waves in a tube satisfied the same equation.  Before going to higher 
dimensions, I just want to focus on one crucial feature of this wave equation: it’s linear, which 
just means that if you find two different solutions ( )1 ,y x t  and ( )2 ,y x t then ( ) ( )1 2, ,y x t y x t+ is 
also a solution, as we proved earlier.   
 
This important property is easy to interpret visually: if you can draw two wave solutions, then at 
each point on the string simply add the displacement ( )1 ,y x t  of one wave to the other ( )2 ,y x t —
you just add the waves together—this also is a solution.  So, for example, as two traveling waves 
moving along the string in opposite directions meet each other, the displacement of the string at 
any point at any instant is just the sum of the displacements it would have had from the two 
waves singly.  This simple addition of the displacements is termed “interference”, doubtless 
because if the waves meeting have displacement in opposite directions, the string will be 
displaced less than by a single wave.  It’s also called the Principle of Superposition. 

The Wave Equation and Superposition in More Dimensions 
What happens in higher dimensions?  Let’s consider two dimensions, for example waves in an 
elastic sheet like a drumhead.  If the rest position for the elastic sheet is the (x, y) plane, so when 
it’s vibrating it’s moving up and down in the z-direction, its configuration at any instant of time 
is a function ( ), ,z x y t . 
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In fact, we could do the same thing we did for the string, looking at the total forces on a little bit 
and applying Newton’s Second Law.  In this case that would mean taking one little bit of the 
drumhead, and instead of a small stretch of string with tension pulling the two ends, we would 
have a small square of the elastic sheet, with tension pulling all around the edge.  Remember that 
the net force on the bit of string came about because the string was curving around, so the 
tensions at the opposite ends tugged in slightly different directions, and didn’t cancel.  The 

2 / 2y x∂ ∂  term measured that curvature, the rate of change of slope. In two dimensions, thinking 
of a small square of the elastic sheet, things are more complicated.  Visualize the bit of sheet to 
be momentarily like a tiny patch on a balloon, you’ll see it curves in two directions, and tension 
forces must be tugging all around the edges.  The total force on the little square comes about 
because the tension forces on opposite sides are out of line if the surface is curving around, now 
we have to add two sets of almost-opposite forces from the two pairs of sides.  I’m not going to 
go through all the math here, but I hope it’s at least plausible that the equation is: 
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The physics of this equation is that the acceleration of a tiny bit of the sheet comes from out-of-
balance tensions caused by the sheet curving around in both the x- and y-directions, this is why 
there are the two terms on the left hand side. 
 
Remarkably, this same equation comes out for water waves (at least for small amplitudes), sound 
waves, and even the electromagnetic waves we now know as radio, microwaves, light, X-rays: so 
it’s called the Wave Equation.  
 
And, going to three dimensions is easy: add one more term to give 
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This sum of partial differentiations is so common in physics that there’s a shorthand: 
 

( )2 2 21/ / .2f v f t∇ = ∂ ∂  
 
Just as we found in one dimension traveling harmonic waves ( ) (sin )f x vt A kx tω− = − , with 

vkω = , you can verify that the three-dimensional equation has harmonic solutions 
 

( ) ( ), , , sin x y zf x y z t A k x k y k z tω= + + −  
 
and now 
 

v kω = , where 2 2 2 .x y zk k k k= + +  
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In fact, k  is a vector in the direction the wave is moving.  The electric and magnetic fields in a 
radio wave or light wave have just this form (or, closer to the source, a very similar equivalent 
expression for outgoing spheres of waves, rather than plane waves).   
 
It’s important to realize that this more complicated equation is still a linear equation—the 
principle of superposition still holds.  If two waves on an elastic sheet, or the surface of a pond, 
meet each other, the result at any point is given by simply adding the displacements from the 
individual waves.  (Assuming as always small waves, so the water waves don’t fall apart into 
foam.)  
 
We’ll begin by thinking about waves propagating freely in two and three dimensions, than later 
consider waves in restricted areas, such as a drum head. 

How Does a Wave Propagate in Two and Three Dimensions? 
A one-dimensional wave doesn’t have a choice: it just moves along the line (well, it could get 
partly reflected by some change in the line and part of it go backwards).  But when we go to 
higher dimensions, how a wave disturbance starting in some localized region spreads out is far 
from obvious.  But we can begin by recalling some simple cases: dropping a pebble into still 
water causes an outward moving circle of ripples.  If we grant that light is a wave, we notice a 
beam of light changes direction on going from air into glass.  Of course, it’s not immediately 
evident that light is a wave: we’ll talk a lot more about that later.   

Huygen’s Picture of Wave Propagation  
If a point source of light is switched on, the wavefront is an expanding sphere centered at the 
source.  Huygens suggested that this could be understood if at any instant in time each point on 
the wavefront was regarded as a source of secondary wavelets, and the new wavefront a moment 
later was to be regarded as built up from the sum of these wavelets. For a light shining 
continuously, this process just keeps repeating.  
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Sample secondary wavelets 

Wave front 
at time t 

New wave front slightly later 

Huygens’ picture of how a spherical wave propagates:  each point 
on the wave front is a source of secondary wavelets that generate 
the new wave front. 

 
 
What use is this idea? For one thing, it explains refraction—the change in direction of a 
wavefront on entering a different medium, such as a ray of light going from air into glass.  
 
If the light moves more slowly in the glass, velocity v instead of c, with v < c, then Huygen’s 
picture explains Snell’s Law, that the ratio of the sines of the angles to the normal of incident and 
transmitted beams is constant, and in fact is the ratio c/v.   
 

 
2θ

1θ
 

Snell’s Law : a ray of light entering glass from air is bent towards the normal, and 

21sin / sinθ θ  is the same for any entering angle. 
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This is evident from the diagram below: in the time the wavelet centered at A has propagated to 
C, that from B has reached D, the ratio of lengths AC/BD being c/v.  But the angles in Snell’s 
Law are in fact the angles ABC, BCD, and those right-angled triangles have a common 
hypotenuse BC, from which the Law follows.  
 

A 

B 

WA 

air glass 

WB 

C 

D 

Huygens’ explanation of refraction: showing two wavelets from the wavefront AB:    
 
WB is slowed down compared with WA , since it is propagating in glass.  This turns 
the wave front through an angle. 

 
Huygens’ picture also provides a ready explanation of what happens when a plane wave front 
encounters a barrier with one narrow opening: and by narrow, we mean small compared with the 
wavelength of the wave.  It’s easy to arrange this for water waves: it’s found that on the other 
side of the barrier, the waves spread out in circular fashion form the small hole. 
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A plane wave encounters a barrier 
with an opening smaller than a 
wavelength: the wave spreads in 
circular fashion on the far side. 

 

Two-Slit Interference:  How Young measured the Wavelength of Light  
If the slit is wider than a wavelength or so, the pattern gets more complicated, as we would 
expect from Huygens’ ideas, because now the waves on the far side arise from a line of sources, 
not what amounts to one point.  To investigate this further, consider the simplest possible next 
case: a barrier with two small holes in it, so on the far side we’re looking at waves radiating 
outwards from, effectively, two point sources.  

 

Waves spreading out from two small slits in a barrier: the blue circles represent wave crests, 
where two cross the wave has maximum positive value, for example along the central line. 

 
For two synchronized sources generating harmonic waves, at any point in the tank equally 
distant from the two sources (the central line in the picture above), the waves will add, the water 
will be maximally disturbed.  For light waves, there will be a maximum in brightness at the 
center of a screen as shown in the diagram: 
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For light waves passing through two narrow slits and shining on a screen (on the right) there will 
be another bright spot at a point P away from the center C2 of the screen, provided the distances 
of P from the two slits differ by a whole number of wavelengths: 

Waves passing through two narrow slits in a barrier.  If the distance 
S2P to point P on the screen is exactly one wavelength longer than 
S1P, the waves will arrive at P in phase and reinforce each other.  
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Waves passing through two narrow slits in a barrier.  Since the 
distance S2C2  to point C2 on the screen is equal to S1C2,  the waves 
will arrive at C2 in phase and reinforce each other.  For light, this 
means a bright spot at the center of the screen. 

C1 
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On the other hand, at a point approximately half way from the center of the screen to P the waves 
from the two sources will arrive at the screen exactly out of phase: the crest of one will arrive 
with the trough of the other, they will cancel, and there will be no light.  Evidently, then, we will 
see on the screen a series of bright areas and dark areas, the brightest spots being at the points 
where the waves from the two slits arrive exactly in phase.   
 
There is a Flash animation of this pattern formation here. 
 
This pattern, generated by what is called interference between the waves, and also referred to as 
a diffraction pattern is historically important, because it was used to establish that light is a 
wave, by Thomas Young in 1807.  (Recall Newton had believed light was a stream of particles, 
and that was very widely accepted at the time.)   
 
Young used the pattern to find the wavelengths of red and violet light.  His method can be 
understood from the diagram above.  We did the experiment in class with a slit separation of 
about 0.2 mm., giving bright spots on the screen about 3 cm apart, with a screen 10 m from the 
slits.  
 
That is to say, in the diagram above we had  and we found 

 (within a percent or two).  Looking at the diagram, it’s clear that the angle to P 
from the slits is very small, in fact it’s   So the diagram as drawn is 
very exaggerated!    

3
1 2 1 20.2 10 m, 9.5m,S S C C−= × =

2 3 cm.C P x= =
3/ 3.15 10 radianx L −= × s.

 
Now, the line S1Q is perpendicular to the light rays setting off for P (they are extremely close to 
parallel).   The angle between S1Q and S1S2  is the same as that between C1P and C1C2, that is, 

 This means that the lengths S1Q and S1S2 are effectively equal, and therefore 
that 

33.15 10 radians.−×

  
32
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S S d L
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This is very accurate for such a small angle, and for the data as given here the wavelength of the 
light  3 73.15 10 6.3 10 m 630nm.dλ − −= × = × =

Another Bright Spot 
About ten years after Young’s result a French civil engineer, Augustin Fresnel, independently 
developed a wave theory of light, and gave a more complete mathematical analysis.  This was 
disputed by the famous French mathematician Simeon Poisson, who pointed out that if the wave 
theory were true, one could prove mathematically that in the sharp shadow of a small round 
object, there would be a bright spot in the center, because the waves coming around the 
circumference all around would add there.  This seemed ridiculous—but French physicist 
Francois Arago actually did the experiment, and found the spot!  The wave theory of light had 
arrived. 
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