next up previous
Next: About this document ...

Physics 201, Section 1 (Conetti)Final Exam Dec. 10, 1996


In this test neither your book nor any notes are allowed. You have three hours to do the problems, or four and one-half minutes a problem. Go over the test answering the easy problems first. Then go back and do the more difficult ones.

The answers go on the blue ``bubble'' sheet whose bubbles should be filled in with a No. 2 pencil. Don't forget to print your name. My name -- Conetti -- goes in the slot for the Class Name/Abbreviation. You social security number should also be placed in the appropriate slot as well as the class number: 31436. Your pledge should be written and signed at the back of the ``bubble'' sheet.

Answer key (corrected on Dec 10):
? c b a d ? d ? a d e c b e b c c d a ? b b a e c ? a a c e a e a c c c b c e c

Some possibly useful formulae:

$x = x_0 + v_{x0}t + \frac{1}{2}a_{x}t^2$ v = v0 + at v2 = v02 + 2a(x - x0) $R = \frac{v_0^2}{g}\sin{2\theta}$ $\vec{F} = m\vec{a}$
$\vec{p} = m\vec{v}$ $\vec{F} = m\frac{\textstyle\Delta\vec{p}}{\textstyle\Delta{t}}$ $\vec{F}\Delta{t} = \Delta\vec{p}$ $F_{\mbox{static fr.}} \leq \mu{N}$ $F_{\mbox{kinetic fr.}} = \mu{N}$
$a_c = \frac{\textstyle v^2}{\textstyle r}$ $f = \frac{\textstyle1}{\textstyle T}$ $F = \frac{\textstyle Gm_1m_2}{\textstyle r^2}$ PE = $-\frac{\textstyle GM_Em}{\textstyle r}$ $W = F_{\parallel}\Delta{s}$
$W = \frac{1}{2}kx^2$ KE = $\frac{1}{2}mv^2$ PE = mgh $P = \frac{\textstyle\Delta{W}}{\textstyle\Delta{t}}$ $P = F\cdot{v}$
2l$W = \Delta$KE = $\frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$ $\theta = \frac{\textstyle s}{\textstyle r}$ $\omega = \frac{\textstyle v}{\textstyle r}$ $\alpha = \frac{\textstyle a}{\textstyle r}$  
$\tau = rF\sin\theta$ $\tau = I\alpha$ $\tau = \frac{\textstyle\Delta{L}}{\textstyle\Delta{t}}$ $KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$ $L = mr^2\omega$
L = Iw $I_{disk} = \frac{1}{2}mR^2$ $I_{sphere} = \frac{2}{5}mR^2$ $P = \rho{g}h$ A1v1 = A2v2
Q = Av 2l$P + \frac{1}{2}{\rho}v^2 + {\rho}gy$ = const. $P_1 - P_2 = \frac{\textstyle8Q\eta{L}}{\textstyle\pi{R}^4}$ $F = \rho{V}g$  
$P = \sigma{e}AT^4$ $\frac{\textstyle\Delta{Q}}{\textstyle\Delta{t}} = 
 KA\frac{\textstyle(T_2 - T_1)}{\textstyle L}$ $Q = mc\Delta{t}$ Q = mL PV = nRT
PV = NkT $\frac{1}{2}m\overline{v^2} = \frac{3}{2}kT$ $W = P\Delta{V}$ $\Delta{U} = Q - W$ TK = TC + 273.
$\Delta{S} = \frac{\textstyle Q}{\textstyle T}$ 2l$\left( \frac{\textstyle W}{\textstyle Q_H}\right)_{\rm Carnot} 
 = 1 - \frac{\textstyle T_C}{\textstyle T_H}$ 2l$\left( \frac{\textstyle Q_C}{\textstyle W}\right)_{\rm ideal} 
 = \frac{\textstyle T_C}{\textstyle T_H - T_C}$    
2l$\left( \frac{\textstyle Q_H}{\textstyle W}\right)_{\rm ideal} 
 = \frac{\textstyle T_H}{\textstyle T_H - T_C}$ $\omega = \sqrt{\frac{\textstyle k}{\textstyle m}}$ $\omega = \sqrt{\frac{\textstyle g}{\textstyle L}}$ $\sin\theta = \frac{\textstyle v}{\textstyle v_s}$  
$v = \lambda{f}$ $L_I (dB) = 10\log_{10}\frac{\textstyle I}{\textstyle I_0}$ $f = 1/T = \omega /2\pi$ $f' = \frac{\textstyle f}{\textstyle1{\mp}v_s/v}$ $I(R) = \frac{\textstyle P}{\textstyle4{\pi}R^2}$

Some possibly useful constants:

R = 8.31 J/mol$\cdot$K g = 9.80 m/s2 $k = 1.38{\times}10^{-23}$J/K $N_A = 6.022{\times}10^{23}$/mole
$G = 6.673{\times}10^{-11}$m$^3\cdot$kg$^{-1}\cdot$s-2 $M_{\mbox{E}} = 5.98{\times}10^{24}$ kg $R_{\rm E} = 6.38{\times}10^6$ m $M_{\rm moon} = 7.35{\times}10^{22}$ kg
$R_{\rm moon} = 1.74{\times}10^6$ m $\sigma = 5.67{\times}10^{-8}$ W/m$^2{\cdot}$K4 c(water) = 4187 J/kg$\cdot^{\circ}$C c(ice) = 2090 J/kg$\cdot^{\circ}$C
Lf(water) = $3.34{\times}10^5$J/kg Lv(water) = $22.6{\times}10^5$J/kg $\rho$(water) = $1.{\times}10^3$ kg/m3 v(sound) = 340 m/s
1 atm = $1.01{\times}{10}^5$ Pa 1 cal = 4.187 Joules    

1.

\begin{parbox}[t]
{6.0in}{
Two bodies A and B can move in a straight line, in ei...
 ... they are moving in opposite directions \\ e) none of the above \\ }\end{parbox}
2.

\begin{parbox}[t]
{6.0in}{
A bucket, attached to a rope wound around a 6.4 cm ra...
 ...s from rest at t = 0 ? \\ a) 1 \\ b) 2.5 \\ c) 5 \\ d) 10 \\ e) 20
}\end{parbox}

3.

\begin{parbox}[t]
{6.0in}{
Two cars, travelling towards each other at the same 7...
 ...1.8 m/s$^2$\space \\ d) 25.9 m/s$^2$\space \\ e) 2. m/s$^2$\space 
}\end{parbox}

4.

\begin{parbox}[t]
{6.0in}{
A peregrine falcon is diving at 35 m/s in a direction...
 ...5 m/s \\ b) 30.3 m/s \\ c) 150. m/s \\ d) 20.2 m/s \\ e) 173.2 m/s
}\end{parbox}

5.

\begin{parbox}[t]
{6.0in}{
 The Newfie dog is swimming towards the ship, safely ...
 ...ox{$^{\circ}$}West of North \\ e) 60\mbox{$^{\circ}$}West of North
}\end{parbox}

6.

\begin{parbox}[t]
{6.0in}{
A frog jumps in the air at a 30\mbox{$^{\circ}$}angle...
 ...1.2in}p{1.2in}p{1.2in}p{1.2in}}
a) & b) & c) & d) & e)\end{tabular}}\end{parbox}

7.

\begin{parbox}[t]
{6.0in}{
At which angle do you have to throw a baseball to kee...
 ... 90\mbox{$^{\circ}$}\\ e) the ''air time'' is independent of angle
}\end{parbox}

8.

\begin{parbox}[t]
{6.0in}{
In the assembly below, 1,2 and 3 are strings of equal...
 ...ta$\space \\ e) the answer depends on the actual value of the mass
}\end{parbox}

9.

\begin{parbox}[t]
{6.0in}{
A 1200. kg car traveling at 72 km/h comes across an i...
 ...t of friction? \\ a) 0.0 \\ b) 0.25 \\ c) 0.5 \\ d) 0.75 \\ e) 1.0
}\end{parbox}

10.

\begin{parbox}[t]
{6.0in}{
A mass attached to a spring and resting on a friction...
 ...be smaller than the earth values, but still equal to each other \\ }\end{parbox}

11.

\begin{parbox}[t]
{6.0in}{
For a body in space at a distance of 1 earth's radius...
 ...d) mass is the same, weight two times less \\ e) none of the above
}\end{parbox}

12.

\begin{parbox}[t]
{6.0in}{
A flea pushing off the ground for 1 ms, attains a 1.6...
 ...\space N \\ d) 8. $\times 10^{-3}$\space N \\ e) None of the above
}\end{parbox}

13.

\begin{parbox}[t]
{6.0in}{
According to the dials on your dashboard, your car is...
 ...s?\\ a) .26 m \\ b) .32 m \\ c) 1.28 m \\ d) .64 m \\ e) 19.1 m \\ }\end{parbox}

14.

\begin{parbox}[t]
{6.0in}{
To drive a stake into the ground, you lift a 500 kg m...
 ...\ a) 4900 N \\ b) 2900 N \\ c) 5000 N \\ d) 12250 N \\ e) 49000 N 
}\end{parbox}

15.

\begin{parbox}[t]
{6.0in}{
What is the theoretical maximum amount of power you c...
 ... \\ b) 38.2 MW \\ c) 637 MW \\ d) 2293 MW \\ e) None of the above 
}\end{parbox}

16.

\begin{parbox}[t]
{6.0in}{
A 20 g bullet travelling at 600 m/s hits a 5.0 kg tar...
 ... b) 32.6 rad/s \\ c) 63.5 rad/s \\ d) 80.2 rad/s \\ e) 100.4 rad/s
}\end{parbox}

17.

\begin{parbox}[t]
{6.0in}{
A rocket takes off after having been accelerated up t...
 ...netic energy remains constant while its potential energy increases
}\end{parbox}

18.

\begin{parbox}[t]
{6.0in}{
Two balls are rolling with the same speed on a flat s...
 ...ter the dip, the balls have the same speed \\ e) none of the above
}\end{parbox}

19.

\begin{parbox}[t]
{6.0in}{
If our Newfoundland dog of mass m and speed v, and a ...
 ... Newfie has twice the energy of the poodle \\ e) none of the above
}\end{parbox}

20.

\begin{parbox}[t]
{6.0in}{
If the following graph represents the \underline{velo...
 ... provided the bodies bounce off elastically\\ e) none of the above
}\end{parbox}

21.

\begin{parbox}[t]
{6.0in}{
A 5.0 kg bomb initially at rest explodes into two fra...
 ...3.7 J \\ c) 63.5 J \\ d) 96.5 J \\ e) not enough information given
}\end{parbox}

22.

\begin{parbox}[t]
{6.0in}{
 In a 5. kg television set, $10^{15}$\space electrons...
 ...\\ d) $4.8\times 10^{-4} m/s$\space \\ e) $3.6\times 10^{-2} m/s$ 
}\end{parbox}

23.

\begin{parbox}[t]
{6.0in}{
A sphere and a cylinder, both of radius r and mass m ...
 ... the bodies \\ e) the answer depends on the length of the cylinder
}\end{parbox}

24.

\begin{parbox}[t]
{6.0in}{
A compressed spring is inserted between two carts of ...
 ...n the side of the slower moving cart \\ e) it will remain balanced
}\end{parbox}

25.

\begin{parbox}[t]
{6.0in}{
A research vessel deep undersea experiences a pressur...
 ...1 m \\ b) 2041 m \\ c) 2051 m \\ d) 2061 m \\ e) none of the above
}\end{parbox}

26.

\begin{parbox}[t]
{6.0in}{
If a liquid filled U-tube assumes the configuration s...
 ...side \\ e) the situation can be explained in terms of Pascal's law
}\end{parbox}

27.

\begin{parbox}[t]
{6.0in}{
If a block of wood ($\rho = 0.8 g/cm^3$) if floating ...
 ...\ a) 20\% \\ b) 40\% \\ c) 60\% \\ d) 80\% \\ e) none of the above
}\end{parbox}

28.

\begin{parbox}[t]
{6.0in}{
The rate of radiation from the sun is determined to b...
 ... b) 3548 K \\ c) 12422 K \\ d) 4676 K \\ e) not enough information
}\end{parbox}

29.

\begin{parbox}[t]
{6.0in}{
Two blocks of aluminum, one with a 1 kg mass and the ...
 ...gh information, need to know the relative specific heat capacities
}\end{parbox}

30.

\begin{parbox}[t]
{6.0in}{
18 g of water ($H_{2}O$) are converted into steam at ...
 ...552.6 liters \\ c) 1.70 liters \\ d) 82.3 liters \\ e) 30.7 liters
}\end{parbox}

31.

\begin{parbox}[t]
{6.0in}{
A cylindrical container with a movable piston of 0.2 ...
 ...) 39.8 m$^3$\space \\ d) .0004 m$^3$\space \\ e) none of the above
}\end{parbox}

32.

\begin{parbox}[t]
{6.0in}{
 An ideal gas is contained in a cylinder-and-piston t...
 ...y the
gas is \\ a) 50 J \\ b) 25 J \\ c) -50 J \\ d) -25 J \\ e) 0
}\end{parbox}

33.

\begin{parbox}[t]
{6.0in}{
If you leave the door of your fridge open the tempera...
 ...nd on what was the room temperature when the door was
first opened
}\end{parbox}

34.

\begin{parbox}[t]
{6.0in}{
A heat pump can transfer thermal energy from a colder...
 ...imation, its operation cycle is reversible \\ e) none of the above
}\end{parbox}

35.

\begin{parbox}[t]
{6.0in}{
As the Newfoundland is floating in a choppy sea, you ...
 ...equency is 0.5 s$^{-1}$\space \\ e) the waves' wavelength is 0.5 m
}\end{parbox}

36.

\begin{parbox}[t]
{6.0in}{
Which is the correct expression for the motion of a p...
 ... \\ e) $z(x,y,t)=z_{0}\cos 2\pi (t/T-x/\lambda_{x}-y/\lambda_{y})$
}\end{parbox}

37.

\begin{parbox}[t]
{6.0in}{
A weightless spring holding a 2 kg mass is stretched ...
 .../s \\ b) 4.2 m/s \\ c) 5.8 m/s \\ d) 6.7 m/s \\ e) not enough data
}\end{parbox}

38.

\begin{parbox}[t]
{6.0in}{
Galileo is observing the oscillations of the cathedra...
 ... Galileo stands \\ e) not enough information to predict trajectory
}\end{parbox}

39.

\begin{parbox}[t]
{6.0in}{
You can break a glass with soundwaves when \\ a) the ...
 ...hold \\ e) sound waves are emitted at the glass' natural frequency
}\end{parbox}

40.

\begin{parbox}[t]
{6.0in}{
What is the change of sound intensity (in \underline{...
 ...from the source? \\ a) -3. \\ b) -4. \\ c) -.6 \\ d) -6. \\ e) -.3
}\end{parbox}


 
next up previous
Next: About this document ...
Sergio Conetti
9/26/1999