PHYS 232 PS 5 Solutions

P28.26 Name the currents as shown in the figure to the right. Then $w+x+z=y$. Loop equations are

FIG. P28.26

$$
\begin{aligned}
& -200 w-40.0+80.0 x=0 \\
& -80.0 x+40.0+360-20.0 y=0 \\
& +360-20.0 y-70.0 z+80.0=0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x=2.50 w+0.500 \\
400-100 x-20.0 w-20.0 z=0 \\
440-20.0 w-20.0 x-90.0 z=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
350-270 w-20.0 z=0 \\
430-70.0 w-90.0 z=0
\end{array}\right.
$$

Eliminate $z=17.5-13.5 \mathrm{w}$ to obtain

$$
430-70.0 w-1575+1215 w=0
$$

$$
w=\frac{70.0}{70.0}=1.00 \mathrm{~A} \text { upw ard in } 200 \Omega
$$

Now

$$
\begin{aligned}
& z=4.00 \mathrm{~A} \text { upw ard in } 70.0 \Omega \\
& x=3.00 \mathrm{~A} \text { upw ard in } 80.0 \Omega \\
& y=8.00 \mathrm{~A} \text { dow nw ard in } 20.0 \Omega
\end{aligned}
$$

and for the 200Ω,

$$
\Delta V=\mathbb{R}=(1.00 \mathrm{~A})(200 \Omega)=200 \mathrm{~V}
$$

P28.30 We apply Kirchhoff's rules to the second diagram.

$$
\begin{align*}
& 50.0-2.00 I_{1}-2.00 I_{2}=0 \tag{1}\\
& 20.0-2.00 I_{3}+2.00 I_{2}=0 \tag{2}\\
& I_{1}=I_{2}+I_{3} \tag{3}
\end{align*}
$$

Substitute (3) into (1), and solve for I_{1}, I_{2}, and I_{3} $I_{1}=20.0 \mathrm{~A} ; \quad I_{2}=5.00 \mathrm{~A} ; \quad I_{3}=15.0 \mathrm{~A}$.

Then apply $\mathrm{P}=I^{2} R$ to each resistor:
$(2.00 \Omega)_{1}: \quad P=I_{1}^{2}(2.00 \Omega)=(20.0 \mathrm{~A})^{2}(2.00 \Omega)=800 \mathrm{~W}$
$(4.00 \Omega): \quad \mathrm{P}=\left(\frac{5.00}{2} \mathrm{~A}\right)^{2}(4.00 \Omega)=25.0 \mathrm{~W}$

FIG. P28.30
(Half of I_{2} goes through each)
$(2.00 \Omega)_{3}: \quad P=I_{3}^{2}(2.00 \Omega)=(15.0 \mathrm{~A})^{2}(2.00 \Omega)=450 \mathrm{~W}$.

P28.32
(a) $\quad I(t)=-I_{0} e^{-t R C}$

$$
I_{0}=\frac{Q}{R C}=\frac{5.10 \times 10^{-6} \mathrm{C}}{(1300 \Omega)\left(2.00 \times 10^{-9} \mathrm{~F}\right)}=1.96 \mathrm{~A}
$$

$$
I(t)=-(1.96 \mathrm{~A}) \exp \left[\frac{-9.00 \times 10^{-6} \mathrm{~s}}{(1300 \Omega)\left(2.00 \times 10^{-9} \mathrm{~F}\right)}\right]=-61.6 \mathrm{~m} \mathrm{~A}
$$

(b) $\quad q(t)=Q e^{-\psi R C}=(5.10 \mu \mathrm{C}) \exp \left[\frac{-8.00 \times 10^{-6} \mathrm{~s}}{(1300 \Omega)\left(2.00 \times 10^{-9} \mathrm{~F}\right)}\right]=0.235 \mu \mathrm{C}$
(c) The magnitude of the maximum current is $I_{0}=1.96 \mathrm{~A}$.

P28.36
(a) $\quad \tau=R C=\left(1.50 \times 10^{5} \Omega\right)\left(10.0 \times 10^{-6} \mathrm{~F}\right)=1.50 \mathrm{~s}$
(b) $\tau=\left(1.00 \times 10^{5} \Omega\right)\left(10.0 \times 10^{-6} \mathrm{~F}\right)=1.00 \mathrm{~s}$
(c) The battery carries current

$$
\frac{10.0 \mathrm{~V}}{50.0 \times 10^{3} \Omega}=200 \mu \mathrm{~A}
$$

The $100 \mathrm{k} \Omega$ carries current of magnitude

$$
I=I_{0} e^{-\psi R C}=\left(\frac{10.0 \mathrm{~V}}{100 \times 10^{3} \Omega}\right) e^{-t y 1.00 \mathrm{~s}} .
$$

So the switch carries downward current

$$
200 \mu \mathrm{~A}+(100 \mu \mathrm{~A}) \mathrm{e}^{-t+.00 \mathrm{~s}} \text {. }
$$

P28.64 The battery supplies energy at a changing rate

$$
\frac{d E}{d t}=\mathrm{P}=\varepsilon I=\varepsilon\left(\frac{\varepsilon}{R} e^{-1 / R C}\right) .
$$

Then the total energy put out by the battery is

$$
\int d E=\int_{t=0}^{\infty} \frac{\varepsilon^{2}}{R} \exp \left(-\frac{t}{R C}\right) d t
$$

$$
\int d E=\frac{\varepsilon^{2}}{R}(-R C) \int_{0}^{\infty} \exp \left(-\frac{t}{R C}\right)\left(-\frac{d t}{R C}\right)=-\left.\varepsilon^{2} C \exp \left(-\frac{t}{R C}\right)\right|_{0} ^{\infty}=-\varepsilon^{2} C[0-1]=\varepsilon^{2} C .
$$

The power delivered to the resistor is

$$
\frac{d E}{d t}=\mathrm{P}=\Delta V_{R} I=I^{2} R=R \frac{\varepsilon^{2}}{R^{2}} \exp \left(-\frac{2 t}{R C}\right) .
$$

So the total internal energy appearing in the resistor is $\quad \int d E=\int_{0}^{\infty} \frac{\varepsilon^{2}}{R} \exp \left(-\frac{2 t}{R C}\right) d t$

$$
\int d E=\frac{\varepsilon^{2}}{R}\left(-\frac{R C}{2}\right) \int_{0}^{\infty} \exp \left(-\frac{2 t}{R C}\right)\left(-\frac{2 d t}{R C}\right)=-\left.\frac{\varepsilon^{2} C}{2} \exp \left(-\frac{2 t}{R C}\right)\right|_{0} ^{\infty}=-\frac{\varepsilon^{2} C}{2}[0-1]=\frac{\varepsilon^{2} C}{2} .
$$

The energy finally stored in the capacitor is $U=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2} C \varepsilon^{2}$. Thus, energy of the circuit is conserved $\varepsilon^{2} C=\frac{1}{2} \varepsilon^{2} C+\frac{1}{2} \varepsilon^{2} C$ and resistor and capacitor share equally in the energy from the battery.

* P28.68
(a) With the switch closed, current exists in a simple series circuit as shown. The capacitors carry no current. For R_{2} we have

$$
\mathrm{P}=I^{2} R_{2} \quad I=\sqrt{\frac{\mathrm{P}}{R_{2}}}=\sqrt{\frac{2.40 \mathrm{~V} \cdot \mathrm{~A}}{7000 \mathrm{~V} / \mathrm{A}}}=18.5 \mathrm{~mA} .
$$

The potential difference across R_{1} and C_{1} is

$$
\Delta V=\mathbb{R}_{1}=\left(1.85 \times 10^{-2} \mathrm{~A}\right)(4000 \mathrm{~V} / \mathrm{A})=74.1 \mathrm{~V}
$$

FIG. P28.68(a)
The charge on C_{1}

$$
Q=C_{1} \Delta V=\left(3.00 \times 10^{-6} \mathrm{C} / \mathrm{V}\right)(74.1 \mathrm{v})=222 \mu \mathrm{C} \text {. }
$$

The potential difference across R_{2} and C_{2} is

$$
\Delta V=\mathbb{R}_{2}=\left(1.85 \times 10^{-2} \mathrm{~A}\right)(7000 \Omega)=130 \mathrm{v} .
$$

The charge on C_{2}

$$
Q=C_{2} \Delta V=\left(6.00 \times 10^{-6} \mathrm{C} / \mathrm{v}\right)(130 \mathrm{v})=778 \mu \mathrm{C}
$$

The battery emf is

$$
\mathbb{R}_{e q}=A\left(R_{1}+R_{2}\right)=1.85 \times 10^{-2} \mathrm{~A}(4000+7000) \mathrm{V} / \mathrm{A}=204 \mathrm{~V} .
$$

(b) In equilibrium after the switch has been opened, no current exists. The potential difference across each resistor is zero. The full 204 V appears across both capacitors. The new charge C_{2}

$$
Q=C_{2} \Delta V=\left(6.00 \times 10^{-6} \mathrm{C} / \mathrm{V}\right)(204 \mathrm{~V})=1222 \mu \mathrm{C}
$$

for a change of $1222 \mu \mathrm{C}-778 \mu \mathrm{C}=444 \mu \mathrm{C}$.

FIG. P28.68(b)

P28.75 The total resistance between points b and c is:

$$
R=\frac{(2.00 \mathrm{k} \Omega)(3.00 \mathrm{k} \Omega)}{2.00 \mathrm{k} \Omega+3.00 \mathrm{k} \Omega}=1.20 \mathrm{k} \Omega .
$$

The total capacitance between points d and e is:
$C=2.00 \mu \mathrm{~F}+3.00 \mu \mathrm{~F}=5.00 \mu \mathrm{~F}$.
The potential difference between point d and e in this series $R C$ circuit at any time is:

$$
\Delta V=\varepsilon\left[1-e^{-\psi R C}\right]=(120.0 \mathrm{~V})\left[1-e^{-1000 \psi / 6}\right] .
$$

Therefore, the charge on each capacitor between points d and e is:

$$
q_{1}=C_{1} \Delta V=(2.00 \mu \mathrm{~F})(120.0 \mathrm{~V})\left[1-e^{-1000 t / 6}\right]=(240 \mu \mathrm{C})\left[1-e^{-1000 \mathrm{t} / 6}\right]
$$

FIG. P28.75

$$
\text { and } \Phi_{2}=C_{2}(\Delta V)=(3.00 \mu \mathrm{~F})(120.0 \mathrm{~V})\left[1-e^{-1000 \mathrm{t} / 6}\right]=(360 \mu \mathrm{C})\left[1-e^{-1000} / 6\right] \text {. }
$$

