PHYS 232 PS 6 Solutions

P29.10
$q \mathbf{E}=\left(-1.60 \times 10^{-19} \mathrm{C}\right)(20.0 \mathrm{~N} / \mathrm{C}) \hat{\mathbf{k}}=\left(-3.20 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}$
$\sum \mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}=m \mathbf{a}$
$\left(-3.20 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}-1.60 \times 10^{-19} \mathrm{C}\left(1.20 \times 10^{4} \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}\right) \times \mathbf{B}=\left(9.11 \times 10^{-31}\right)\left(2.00 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathbf{k}}$
$-\left(3.20 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}-\left(1.92 \times 10^{-15} \mathrm{C} \cdot \mathrm{m} / \mathrm{s}\right) \hat{\mathbf{i}} \times \mathbf{B}=\left(1.82 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}$
$\left(1.92 \times 10^{-15} \mathrm{C} \cdot \mathrm{m} / \mathrm{s}\right) \hat{\mathbf{i}} \times \mathbf{B}=-\left(5.02 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}$
The magnetic field may have an x component. $B_{z}=0$ and $B_{y}=-2.62 \mathrm{~m} \mathrm{~T}$.
$\mathbf{P} 29.14 \quad \frac{\left|\mathbf{F}_{B}\right|}{\ell}=\frac{m g}{\ell}=\frac{I|\ell \times \mathbf{B}|}{\ell}$
$I=\frac{m g}{B l}=\frac{(0.0400 \mathrm{~kg} / \mathrm{m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{3.60 \mathrm{~T}}=0.109 \mathrm{~A}$
The direction of I in the bar is to the right.

FIG. P29.14

P29.20
(a) $2 \pi r=2.00 \mathrm{~m}$ so $\quad r=0.318 \mathrm{~m}$

$$
\mu=\mathbb{I A}=\left(17.0 \times 10^{-3} \mathrm{~A}\right)\left[\pi(0.318)^{2} \mathrm{~m}^{2}\right]=5.41 \mathrm{~mA} \cdot \mathrm{~m}^{2}
$$

(b) $\tau=\mu \times B$
so $\quad \tau=\left(5.41 \times 10^{-3} \mathrm{~A} \cdot \mathrm{~m}^{2}\right)(0.800 \mathrm{~T})=4.33 \mathrm{~m} \mathrm{~N} \cdot \mathrm{~m}$

P29.33

$$
q(\Delta v)=\frac{1}{2} m v^{2} \quad \text { or } \quad v=\sqrt{\frac{2 q(\Delta V)}{m}} .
$$

Also, $q v B=\frac{m v^{2}}{r} \quad$ so $\quad r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 q(\Delta V)}{m}}=\sqrt{\frac{2 m(\Delta V)}{q B^{2}}}$.

Therefore,

$$
\begin{aligned}
& r_{p}^{2}=\frac{2 m_{p}(\Delta V)}{\Theta B^{2}} \\
& r_{d}^{2}=\frac{2 m_{d}(\Delta V)}{q_{d} B^{2}}=\frac{2\left(2 m_{p}\right)(\Delta V)}{\Theta B^{2}}=2\left(\frac{2 m_{p}(\Delta V)}{\Theta B^{2}}\right)=2 r_{p}^{2}
\end{aligned}
$$

and

$$
r_{\alpha}^{2}=\frac{2 m_{\alpha}(\Delta V)}{q_{\alpha} B^{2}}=\frac{2\left(4 m_{p}\right)(\Delta V)}{(2 e) B^{2}}=2\left(\frac{2 m_{p}(\Delta V)}{\Theta B^{2}}\right)=2 r_{p}^{2}
$$

The conclusion is:

$$
r_{\alpha}=r_{d}=\sqrt{2} r_{p}
$$

P29.42 In the velocity selector: $\quad v=\frac{E}{B}=\frac{2500 \mathrm{~V} / \mathrm{m}}{0.0350 \mathrm{~T}}=7.14 \times 10^{4} \mathrm{~m} / \mathrm{s}$. In the deflection chamber: $\quad r=\frac{m v}{q B}=\frac{\left(2.18 \times 10^{-26} \mathrm{~kg}\right)\left(7.14 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.0350 \mathrm{~T})}=0.278 \mathrm{~m}$.
*P29.45 Note that the "cyclotron frequency" is an angular speed. The motion of the proton is described by $\sum F=m a:$

$$
\begin{aligned}
& \left\lvert\, q v B \sin 90^{\circ}=\frac{m v^{2}}{r}\right. \\
& \left\lvert\, q B=m \frac{v}{r}=m \omega\right.
\end{aligned}
$$

(a) $\quad \omega=\frac{\mid q B}{m}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.8 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{C} \cdot \mathrm{m})}{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}\left(\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}\right)=7.66 \times 10^{7} \mathrm{rad} / \mathrm{s}$
(b) $\quad v=\omega r=\left(7.66 \times 10^{7} \mathrm{rad} / \mathrm{s}\right)(0.350 \mathrm{~m})\left(\frac{1}{1 \mathrm{rad}}\right)=2.68 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(c) $\quad K=\frac{1}{2} m v^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.68 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}\left(\frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}\right)=3.76 \times 10^{6} \mathrm{eV}$
(d) The proton gains 600 eV twice during each revolution, so the number of revolutions is

$$
\frac{3.76 \times 10^{6} \mathrm{eV}}{2(600 \mathrm{eV})}=3.13 \times 10^{3} \text { revolutions. }
$$

(e) $\quad \theta=\omega t \quad t=\frac{\theta}{\omega}=\frac{3.13 \times 10^{3} \mathrm{rev}}{7.66 \times 10^{7} \mathrm{rad} / \mathrm{s}}\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)=2.57 \times 10^{-4} \mathrm{~s}$

P29.52
(a) The boundary between a region of strong magnetic field and a region of zero field cannot be perfectly sharp, but we ignore the thickness of the transition zone. In the field the electron moves on an arc of a circle:

FIG. P29.52(a)

$$
\frac{v}{r}=\omega=\frac{\mid q B}{m}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{C} \cdot \mathrm{~m}\right)}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}=1.76 \times 10^{8} \mathrm{rad} / \mathrm{s}
$$

The time for one half revolution is,
from $\Delta \theta=\omega \Delta t$

$$
\Delta t=\frac{\Delta \theta}{\omega}=\frac{\pi \mathrm{rad}}{1.76 \times 10^{8} \mathrm{rad} / \mathrm{s}}=1.79 \times 10^{-8} \mathrm{~s} .
$$

(b) The maximum depth of penetration is the radius of the path.

Then $\quad v=\omega r=\left(1.76 \times 10^{8} \mathrm{~s}^{-1}\right)(0.02 \mathrm{~m})=3.51 \times 10^{6} \mathrm{~m} / \mathrm{s}$
and

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2}=\frac{1}{2}\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3.51 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}=5.62 \times 10^{-18} \mathrm{~J}=\frac{5.62 \times 10^{-18} \mathrm{~J} \cdot \mathrm{e}}{1.60 \times 10^{-19} \mathrm{C}} \\
& =35.1 \mathrm{eV} .
\end{aligned}
$$

