PHYS 232 QUIZ 1

02-18-2005
50 minutes.
This quiz has 3 questions. Please show all your work. If your final answer is not correct, you will get partial credit based on your work shown. You are allowed to have one hand-written, one-sided page of equations.

Question I. (40 points)

1. If $\mathrm{a}=3.0 \mathrm{~mm}, \mathrm{~b}=4.0 \mathrm{~mm}, \mathrm{Q} 1=-60 \mathrm{nC}, \mathrm{Q} 2=80 \mathrm{nC}$, and $\mathrm{q}=30 \mathrm{nC}$ in the figure, what is the magnitude and the direction of the total electric

2. A positively charged particle is moving in the $+y$-direction when it enters a region with a uniform electric field pointing in the $+x-$ direction. Which of the diagrams below shows its path while it is in the region where the electric field exists. The region with the field is the region between the plates bounding each figure. The field lines always point to the right. The x-direction is to the right; the y-direction is up.

(a)

(b)

(c)

(d)

(e)

3. What is the potential difference across C 2 when $\mathrm{C} 1=5.0 \mu \mathrm{~F}, \mathrm{C} 2=$ $15 \mu \mathrm{~F}, \mathrm{C} 3=30 \mu \mathrm{~F}$, and $\mathrm{V} 0=24 \mathrm{~V}$?

V_{11}

But $Q_{2}=Q_{3}$ (series)
$\Rightarrow \frac{\Delta V_{2}}{\Delta V_{3}}=\frac{C_{3}}{C_{2}}=\frac{30 \mu \mathrm{MF}}{15 \mu \mathrm{MF}}$ $\Rightarrow \Delta V_{2}=2 \Delta V_{3}$
but $\Delta V_{2}+\Delta V_{3}=24 \mathrm{~V}$ \Rightarrow

$$
\begin{aligned}
\frac{3 \Delta}{2} V_{2} & =24 \mathrm{~V} \\
\Rightarrow \Delta V_{2} & =80616 \mathrm{~V}
\end{aligned}
$$

Question II. (30 points)
A Solid conducting sphere of radius \boldsymbol{a} carries a net negative charge - \boldsymbol{Q}. Concentric with this sphere is a conducting spherical shell with inner radius b and outer radius c, having a net positive charge $+\boldsymbol{Q}$.

05

1. Describe how the charges are distributed in the sphere and in the conducting shell. Show how you arrived at your answers.

*

-Q changes distributed on the surface of the sphere: for a Gauss' surface inside sphere $\Phi=$ since there is no $\overline{5}$. in side a conductor.

* +Q charges distributed on the in side smface of the shell. a Gauss' surface in side the shell. $\$=0$ smear of the (05) 2. What is the electric field (dir
a. $\quad \mathrm{r}<\mathrm{a} \Rightarrow E=0$
b. $\quad a<r<b \Rightarrow$ use a Gauss' smear at r
c. $\quad \mathrm{b}<\mathrm{r}<\mathrm{c}$
d. $\quad \mathrm{r}>\mathrm{c}$.

$$
\phi=\oint E \cdot d a=\frac{Q_{i} \dot{ }}{\varepsilon_{0}}
$$

for spherical symmeluy, $\begin{aligned} E-4 \pi r^{2} & =\frac{-Q}{\varepsilon_{0}} \\ \Rightarrow E & =-1 Q\end{aligned}$

$$
\Rightarrow E=-\frac{1}{4 \pi \varepsilon \frac{Q}{r^{2}}}
$$

(c) for b radially inward.

* radially incarand

$$
\Rightarrow \quad \bar{E}=0
$$

(d) for $r>c$,

$$
\begin{aligned}
E \cdot 4 \pi r^{2}=\frac{Q i n}{\varepsilon_{0}}, \text { but } Q_{\text {in }}=0 \\
\Rightarrow E=\theta
\end{aligned}
$$

3. Sketch the variation of the Electric Field as a function of r on the axes here

05 4. What is the Electric potential just outside the conducting shell?

$$
V(r)=-\int_{\infty}^{r} \stackrel{\rightharpoonup}{F} \cdot d \stackrel{\rightharpoonup}{s}
$$

But $E=0$ out side $\therefore V_{\text {at }} r=c=0$

$$
\vec{E}=-E \hat{r}
$$

and $d \bar{\sigma}=d r \hat{r}$ ache $\hat{r} \cdot \hat{r}=1$ conducting sphere (at $r=a$) and a point on the inside surface of the shell (at

$$
\begin{aligned}
& \operatorname{ren}_{r=1} \Delta v_{a b}=-\int_{a}^{0} E \cdot d s^{5}=+\int_{a}^{b} k_{e} \frac{Q}{r^{2}} d r=-\left[k e \frac{Q}{r}\right]_{a}^{b} \\
& \Delta V_{a b}=-k_{c} Q\left[\frac{1}{b} \bar{H}_{a}^{a} \frac{a}{a}\right]=+k_{c} Q\left[\frac{1}{a}-\frac{1}{b}\right]
\end{aligned}
$$

(65)
6. We now fill the space between the sphere and the shell (space between a and $b)$ with a dielectric material $(\kappa=3.0)$. What now is your answer for part 5 . above.
with a dielectric

Question III. (30 points)
The circuit shown consists of a 110 V battery with negligible internal resistance, three bulbs B1, B2, and B3 and four switches S1, S2, S3 and S4. Bulbs B1 and B2 are rated 110 V and 40 W , while bulb B3 is rated 110 V and 100 W . Switches S1, S2 and S3 are closed while S4 is open.

$$
\begin{aligned}
& \text { (66) 1. Calualae the ersisanece ofeach bulb. } \\
& R_{1}=R_{2}=(110)^{2}=302.5 \Omega_{4}^{R} \Rightarrow R=\frac{\Delta V^{2}}{T} \\
& R_{3}=(110)^{-40} \text { - } \\
& \begin{array}{l}
\mathbb{T}=\frac{\Delta V^{2}}{R} \Rightarrow R=\frac{\Delta V^{2}}{\mathbb{P}}, \Omega_{4}
\end{array} \\
& \begin{array}{l}
\therefore \quad R_{1}=R_{2}=\frac{(110)^{2}}{40}=302.5 \Omega_{4}^{R} \\
R_{3}=\frac{(110)^{2}}{110}=121 \Omega / / \\
\text { (06) 2. Calculate the power dissipated in each bulb. } R_{2} \text { and } R_{3} \text { parralled }
\end{array} \\
& \begin{aligned}
\therefore R_{23}=\frac{1}{1 / 24+\frac{1}{302}}=86.4 \Omega \Rightarrow R_{\text {eq }}=R_{123} & =86.4+302.5 \\
& =389 \Omega
\end{aligned} \\
& \Rightarrow I_{1}=140 / 389=0.28 \mathrm{~A} \Rightarrow(\text { continued } . .)
\end{aligned}
$$

(06)
3. Calculate the currents through bulbs B2 and B3.

$$
\begin{aligned}
& \Delta V_{2}=\Delta V_{3}=\Delta V_{23}=25 \mathrm{~V} \\
& \therefore \quad I_{2} R_{2} \\
& \therefore \Delta V_{2} \Rightarrow I_{2}=\frac{\Delta V_{2}}{R_{2}}=\frac{25}{302.5}=0.083 \mathrm{~A} \\
& I_{3} R_{3}=\Delta V_{3} \Rightarrow I_{3}=\frac{25}{121}=0.2 \mathrm{~A}
\end{aligned}
$$

(06) 4. Describe what happens to the brightness of each bulb if switch S 4 is also closed.
when switch S_{4} is closed $\Delta V_{23}=0$
$\therefore I_{2}=I_{3}=0$. So B_{2} and $B 3$ turn off.
But $R_{e q}=R_{1}=302 \Omega$ now; so move current through BI
5. A PHYS232 student connects a single light bulb (\mathbf{A}) across a regular 9 V

06 battery she bought at the store. Then she adds two more bulbs $(\mathbf{B}$ and $\mathbf{C})$, with parallel she expects the brightness of A to remain unchanged. However, the intensity of \mathbf{A} goes down when \mathbf{B} and \mathbf{C} are added. Explain this observation

* A regular battery has a non zeno internal resistuce.
* for a parallel et.

$$
R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}} \cdots}
$$

\therefore in this case

Resisture

$$
R_{e q}=\frac{R}{3}
$$

V
with only Bulb A But $I=\frac{C_{q}}{R_{\text {eq }}+r}$

with $A B$ and C

$$
I_{A}=\frac{\varepsilon}{R+r}
$$

$$
\begin{aligned}
& I_{A B C}=\frac{\varepsilon_{e}}{R / 3+r} \\
\therefore I_{A B C}> & I_{A}
\end{aligned}
$$

(contimed...)

Question II. 2 continued.

$$
\therefore \quad \Delta V_{1}=I_{1} R_{1}=85 \mathrm{~V}
$$

- and

$$
\begin{aligned}
\Delta V_{23}=\Delta V-\Delta V_{1} & =110-85 \\
& =25 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathbb{P}_{1} & =\frac{\Delta V_{1}^{2}}{R_{1}}=24 \mathrm{~W} \\
\mathbb{P}_{2} & =\frac{\Delta v_{23}^{2}}{R_{2}}=2 \mathrm{~W} \\
\mathbb{P}_{3} & =\frac{\Delta v_{23}^{2}}{R_{3}}=5.2 \mathrm{~W}
\end{aligned}
$$

Question III 5 coutined.
But the potential difference ΔV accross each bulb.

$$
\Delta V=\xi-I r=8=
$$

and
with only A

$$
\Delta V_{A}=\varepsilon-\frac{\varepsilon \cdot r}{R+r}
$$

and with $A, B+C \quad D V_{A B C}=\varepsilon-\frac{\varepsilon r}{R / 3+r}$

$$
\Rightarrow \quad D V_{A}>\Delta V_{A B C}
$$

\Rightarrow Sine \mathbb{P} for each bulb $\Rightarrow \mathbb{P}=\frac{\Delta V^{2}}{\mathbb{R}}$ brightness for A goes down with more bubs added.

Altenate answer for III. 5
\Rightarrow for parallel et. Req. goes down unit more resistors added
\Rightarrow There is more current out of the battens with more bulbs
\Rightarrow Battery has internal resistance, power dissipated in the battery, $I^{2} r$ and The potential drop accross the battery $\Delta V_{\text {battery }}=I r$, are now more
$\Rightarrow \Delta V$ access Bulb A goes down with new bulbs added $\mathbb{P}=\frac{\Delta V^{2}}{R}$,

