Physics 241E - Final Exam - Saturday, 12/19/98 - 9:00am

- 1. A wave is described by the equation $y=(0.15 \text{ m})\sin^2(1.8x-40t)$, where x and y are in m and t is in s. Determine the speed (v) of the wave, and the wavelength (λ) of the wave.
- a) v=62.5 m/s, $\lambda=7.85 \text{ m}$
- b) $v=22.2 \text{ m/s}, \lambda=3.5 \text{ m}$
- c) $v=2 \text{ m/s}, \lambda=1.26 \text{ m}$
- d) $v=5 \text{ m/s}, \lambda=10.26 \text{ m}$
- e) $v=80.5 \text{ m/s}, \lambda=5.26 \text{ m}$
- 2. A charged cork ball of mass 2 g is suspended on a light string in the presence of a uniform electric field. When $E=1 \times 10^5 i$, the ball is in equilibrium, and its supporting string makes an angle of 37° with respect to the vertical. The force on the ball due to gravity is -mgj, and the tension in the string is T. What is the charge on the ball?
- a) 147 nC
- b) 73 nC
- c) 221 nC
- d) 8 nC
- e) 56 nC
- 3. A solid copper sphere 15 cm in radius has a total charge of 50 nC. The electric field values at 17 cms and 12 cms from the center of the sphere are:
- a) E=0 at 12 cm, E= 1.25×10^4 N/C at 17 cm
- b) $E=2.5\times10^4$ N/C at 12 cm, $E=1.25\times10^4$ N/C at 17 cm
- c) E=0 at 12 cm, E= 2.61×10^3 N/C at 17 cm
- d) a) E=0 at 12 cm, $E=1.56x10^4$ N/C at 17 cm
- e) E=0 at 12 cm, E=3114 N/C at 17 cm
- 4. At a certain point P in space, which is some distance from a point charge, q, the electric field intensity is 100 V/m, and the potential is -3000 V. The distance of the point P from the charge and the magnitude of the charge are:
- a) 30 m and -10 μ C,
- b) 3m and $-1 \mu C$
- c) 6m and -2 μ C
- d) 6m and $2 \mu C$
- c) 3m and 1 µC

- 9. Part of a circuit is shown in the figure. The potential difference between points a and b is 3 V. Find current i in the 4- Ω resistor.
- a) 0.33 A
- b) 1.1 A
- c) 0.55 A
- d) 0.75 A
- e) 0.83 A

- 10. A solenoid of length 10 cm, area 5 cm², and 150 turns has a resistance of 8Ω . The solenoid is connected across the terminals of a 12-V battery. Find the energy stored in the solenoid when the final current is attained.
- a) 7.1 x 10⁻⁵ J
- b) 3.4 x 10⁻⁴ J
- c) $2.8 \times 10^{-4} \text{ J}$
- d) $1.6 \times 10^{-4} \text{ J}$
- e) 3.5 x 10⁻⁵ J
- 11. A rectangular, 50-turn coil carries a current of 1.75A is as shown. It is pivoted about the z axis and its plane makes an angle of 30 degrees with the yz plane. Find the torque on the coil when there is a uniform magnetic field B=1.5T j.
- a) 0.546 N.m k
- b) 0.592 N.m k
- c) 0.483 N.m k
- d) 0.315 N.m k
- e) 0.405 N.m k

- 12. A series LCR circuit is driven by an ac generator with a rms emf of 110V and at a frequency of 60 Hz. The inductance L has a reactance of 100Ω . What are R and C if the maximum average power supplied to R is 300W?
- a) 50Ω , 4.2μ F
- b) 30Ω , 1.8μ F
- c) 40Ω , 2.7μ F
- d) 73Ω , 7.0μ F
- e) 61Ω , 5.3μ F