SESSION IV

Electric Flux:

$$\Phi = \int \vec{E} \cdot d\vec{s}$$

For a point charge

$$\Phi = \frac{q}{4\boldsymbol{p}\boldsymbol{e}_0 r^2}.4\boldsymbol{p}r^2 = \frac{q}{\boldsymbol{e}_0}$$

Gauss' Law:

$$\oint E . ds = \frac{q}{\mathbf{e}_0}$$

Applications:

Spherical Shell

$$E = \frac{Q}{4\boldsymbol{p}\boldsymbol{e}_0 r^2}$$

Solid sphere

$$E = \frac{Q}{4pe_0r^2}$$
 outside

$$E = \frac{Qr}{4\boldsymbol{p}\boldsymbol{e}_0 R^3} \text{ inside}$$

Plane of Charge

$$E = \frac{\mathbf{s}}{2\mathbf{e}_0}$$

Conductors

E=0 inside a metal (for static electric fields)

 $E_{||} = 0$ on the surface of a conductor

E(per) >0