Electron Contour Maps

Contour maps of mountains -- give "paths" of constant gravitational potential energy -- if one managed to walk on these lines then no energy expended ! Similarly one can produce electron potential contour maps. This means that when a test charge moves along this line no work is done !
If the points 'a' and 'b' lie on different surfaces then work is done -- and this work is equal to
$q_{0} \int^{b} \vec{E} \vec{d} \vec{s}$
Since no work is done on a constant potential curve -- it does not mean there is no electric field. It $\Rightarrow \mathrm{E}$ field is always \perp to the constant potential line.

EXAMPLES :

(a) Point charge: The potential due to a point charge is given by
$\mathrm{U}(\mathrm{r}) \sim 1 / \mathrm{r} \quad \Rightarrow \quad$ constant potential lines are circles.
We already know that the E field lines are "radial".
(b) Parallel plates:

(c) Complicated metallic object: The surface of the metal is a constant potential and therefore electron field lines are always \perp to the surface.

Fields from potentials: In all the above examples we drew field lines first and then potentials. Can we do the opposite?
$V_{b}-V_{a}=\int_{r_{a}}^{r_{b}} d V=-\int_{r_{a}}^{r_{b}} \vec{E} . d \vec{s}$
$d V=-\vec{E} \cdot d \vec{s}$ Independent of the path
$\therefore \mathrm{E}=-\frac{\mathrm{dV}}{\mathrm{ds}}$ OR $d V=-E d s$
If ds is chosen along perpendicular to the equipotential surface. Therefore And perpendicular to the surface.

How do we do the differentials in 3-Dimensions?

EXAMPLE:

(1) Charged disk and its potential. And how two get field.
(2) Electric dipole \& its potential. And how to get field.
(3) Charged spherical shell - Electric field of shell
$E=\frac{Q}{4 \pi \ell_{0} r^{2}} \quad \mathrm{r}>R$
$=0 r<R$
Therefore $\Delta V=V(r)-V(\infty)=-\int_{\infty}^{r} E \cdot d r=-k Q \int_{\infty}^{r} \frac{d r}{r^{2}}=k Q\left(\frac{1}{r}-\frac{1}{\infty}\right)$
If $\mathrm{V}(\infty)=0 \Rightarrow \mathrm{~V}(\mathrm{r})=\frac{\mathrm{Q}}{4 \pi \varepsilon \mathrm{r}}$ for $\mathrm{r}>\mathrm{R}$ and therefore
$\Delta \mathrm{V}=-\left(\int_{\infty}^{\mathrm{r}} \mathrm{E}_{\text {out }} d r+\int_{R}^{r} E_{\text {in }} d r\right)=\frac{Q}{4 \pi \varepsilon R}$

POTENTIALS \& FIELDS NEAR CONDUCTORS : The role of sharp points on conducting surfaces.

Start with two spheres
$V_{1}=\frac{Q}{4 \pi \varepsilon r_{1}} \quad \neq \quad V_{2}=\frac{q^{\prime}}{4 \pi \varepsilon r_{2}}$.
When connected $\mathrm{V}=\frac{\mathrm{q}_{1}}{4 \pi \varepsilon_{0} \mathrm{r}_{1}}=\frac{q_{2}}{4 \pi \varepsilon_{0} r_{2}} \Rightarrow \frac{q_{1}}{r_{1}}=\frac{q_{2}}{r_{2}}$
But $\quad \sigma=\frac{q_{1}}{4 \pi r_{1}^{2}} \quad \& \sigma_{2}=\frac{q_{2}}{4 \pi r_{2} z} \Rightarrow \sigma_{1} r_{1}=\sigma_{2} r_{2}$
\Rightarrow smaller the radius ---larger the surface charge density.

