
Oscillations in Circuits

The example above leads us directly to the case of a circuit with bot L & C
in it.

Before we consider this let discuss the simpler circuit with just L & R.

Applying the loop rule on the above circuit we can write:
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Note the parallel's between RC & RL circuits. In RC circuits the time constant ~ RCτ  and in

RL circuits 
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Oscillations:  Circuit w/ both L & C.

Count voltage in the direction of current
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How to solve this equation:
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This equation reminds us of S.H.M.  
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The charge on the capacitor (i.e. analog of x) oscillates:

Q = Q0 Cos(wt +  φ)  ;             Q0  and  φ are determined by initial  conditions.

Also, I = dQ/dt = Q0 w Sin(wt + φ)

Or I = I0 Sin (wt + φ)            →        same frequency.

Physical picture:  Start with capacitor charged one way and close switch - current flows into L
& flows to neutralize charges on capacitor - when V is zero I has reached a maximum value - I
decays fi EMF is opposite  fi charge flows in the same direction.

Since L & C are in parallel the voltages VL & VC

are same.

Energy in the oscillating circuits: (No resistance):

Q = Q0 Cos wt
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But energy in a capacitor is:
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The energy in the inductor is:
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Damped Oscillations:  Add a resistor Æ real world circuits always have them:

dI Q
- L = I R - = 0 .

dt C
  because of currrent going ← positive charges are flowing into C.

Similar to damped mechanical oscillator with drag force  i.e.
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Solution is: 0 ( ' )tQ Q e Cos tα ω φ−= + .  Substituting this we find 
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Note that something happens when 2 2-ω α   i.e. when  C
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  the circuit is

damped  or there is "critical damping".
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