Prob2454: How should the charge density of a sphere of radius R vary with r to give a radial field of constant magnitude within the sphere? What happens at the origin \& why?

Answer:

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{s}=\frac{q^{r}}{\epsilon_{0}} \\
& E .4 \pi r^{2}=\frac{q^{(r)}}{\epsilon_{0}} \\
& \text { or } E=\left(\frac{q^{(r)}}{4 \pi r^{2} \epsilon_{0}}\right)=\text { constant } \\
& \Rightarrow \mathrm{q}^{(\mathrm{r})}=m \cdot 4 \pi r^{2} \quad(\mathrm{~m}=\mathrm{constant}) \\
& \Rightarrow \rho=\frac{q^{(r)}}{4 / 3 \pi r^{3}}=\frac{3 m}{r}
\end{aligned}
$$

Blows up at origin because very small charge has to give a non-zero field.

