Prob2619: A capacitor consists of 2 parallel plates of area A. Charge to V_{0} \& disconnect.
(a) How much does energy change if d_{0} changes to d_{1} ?

We know that $C_{0}=\frac{\varepsilon_{0} A}{d}$ and therefore $U=\frac{1}{2} C V^{2}=\frac{1}{2} Q^{2} \frac{d}{\varepsilon_{0} A}$ is the initial energy in the capacitor.

Final energy is: $U^{\prime}=\frac{1}{2} C^{\prime} V^{\prime 2}$ where $C^{\prime}=\frac{\varepsilon_{0} A}{d_{1}}$ but in order to get V^{\prime} need to use the fact that $Q_{0}=C_{0} V_{0}=Q^{\prime}$ and therefore $V^{\prime}=Q^{\prime} / C^{\prime}=Q_{0} / C^{\prime}$
Thus $U^{\prime}=\frac{1}{2}\left(\frac{d_{1}}{\varepsilon_{0} A}\right) Q_{0}{ }^{2}$ and $\Delta U=\frac{1}{2}\left(\frac{d_{1}-d}{\varepsilon_{0} A}\right) Q_{0}{ }^{2}$
(b) How much work is done by external force to move the plate?

The above is the external work done

$\Delta \mathrm{U}$

(c) Suppose the plates are connected to a battery as they are moved how much does energy change under these conditions?

The potential difference does not change but charge \& capacitance change.

$$
V=Q / C=\text { const }
$$

There is a decrease in the stored energy since C decreases.

