Prob31-43: Looking down electromagnet with $\mathrm{R}_{0}=0.08 \mathrm{~m}$ The field decreases linearly from 1.5 T to 0.7 T in 25 ms . What is the EMF induced around the path drawn in fig that consist of quarter arcs at radial distances $\frac{\mathrm{R}_{0}}{4}$ and $\frac{\mathrm{R}_{0}}{2}$?

Ans: Flux through the chosen area if we take (clockwise as positive).

$$
\phi_{\mathrm{m}}=\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{~A}}=-\mathrm{B} \cdot \mathrm{~A}=-\mathrm{B} \frac{1}{4}\left[\pi\left(\frac{\mathrm{R}}{2}\right)^{2}-\pi\left(\frac{\mathrm{R}}{4}\right)^{2}\right]=-\mathrm{B} \pi \mathrm{R}^{2}\left(\frac{3}{64}\right)
$$

Therefore the induced EMF is: $\mathrm{E}=-\frac{\mathrm{d} \phi_{\mathrm{n}}}{\mathrm{dt}}=+\frac{3}{64} \pi \mathrm{R}^{2}\left(\frac{\mathrm{~dB}}{\mathrm{dt}}\right)-\frac{0.8 \mathrm{~T}}{25 \times 10^{-3} \mathrm{~s}}$

$$
=-30 \mathrm{mV} \text { (counterclockwise) }
$$

