SheetCharge: Calculate the force exerted on a charge q placed a distance L away from an infinite plane sheet with surface charge density, σ.

Solution: Break up the sheet into concentric rings with charge Q and use the result that the force on the charge q by a charged ring of radius R with charge Q acts only along the y - direction and is:
$d F_{x}=\frac{k q Q}{\left(R^{2}+L^{2}\right)} \operatorname{Cos} \theta=\frac{k q Q}{\left(R^{2}+L^{2}\right)} \frac{L}{\sqrt{(R 2+L 2)}}=\frac{k q Q L}{\left(R^{2}+L^{2}\right)^{\frac{3}{2}}}$
replace $R^{2} \rightarrow r^{2}$ and $Q \rightarrow 2 \pi r d r \sigma$. Therefore the above equation becomes:
$d F=\frac{2 \pi q \sigma r d r}{4 \pi \varepsilon_{0}} \frac{L}{\left(r^{2}+L^{2}\right)^{\frac{3}{2}}}$ and the integral is $F=\int \frac{2 \pi q \sigma r d r}{4 \pi \varepsilon_{0}} \frac{L}{\left(r^{2}+L^{2}\right)^{\frac{3}{2}}}$

Apply change of variable: $\left(r^{2}+L^{2}\right)=t$. This means $2 r d r=d t$
$F=\frac{q \sigma L^{\infty}}{2 \varepsilon_{0}} \int_{0}^{\infty} \frac{r d r}{\left(r^{2}+L^{2}\right)^{\frac{3}{2}}}$ and $F=\frac{q \sigma L}{2 \varepsilon_{0}} \int_{L 2}^{\infty} \frac{\frac{1}{2} d t}{(t)^{\frac{3}{2}}}=\frac{q \sigma}{2 \varepsilon_{0}}$

