Prob34-33: Given that the maximum voltage in the circuit shown in the figure is 110 V and the frequency of oscillation is 60 Hz , calculate the maximum current and the maximum potential drops across the resistor, capacitor, and inductor.

What is the resonant angular frequency $\omega 0$ of the circuit? Suppose that the voltage generator has a variable angular frequency ω for what values of ω will the current have half the value it has at resonance?

Solution:

We know that $X_{C}=\frac{1}{\omega C}=1.33 \mathrm{k} \Omega$
And $X_{L}=\omega L=302 \Omega$. And therefore $Z=\sqrt{\left(X_{L}-X_{C}\right)^{2}+R^{2}}=1.2 \mathrm{k} \Omega$.
The maximum current in the circuit therefore is:
$I_{0}=\frac{V_{0}}{Z}=110 \mathrm{~V} / 1.2 \mathrm{k}=92 \mathrm{~mA}$.
The potential differences therefore are:
$V_{R 0}=I_{0} \cdot R=55 \mathrm{~V}$
$V_{C 0}=I_{0} \cdot \frac{1}{\omega C}=123 \mathrm{~V}$
and
$V_{L 0}=I_{0} . \omega L=28.0 \mathrm{~V}$

The answer for the last part : the required frequency is $1.7 \times 10^{3} \mathrm{rad} / \mathrm{s}$.

