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Streams of Particles 
Our analysis of the time independent Schrödinger equation using the spreadsheet limited us to 
real values of the wave function ψ(x).  This is fine for analyzing bound states in a potential, or 
standing waves in general, but cannot be used, for example, to represent a stream of electrons 
being emitted by an electron gun, such as in an old TV tube.  The reason is that a real 
wavefunction ψ(x), in an energetically allowed region, is made up of terms locally like coskx and 
sinkx, multiplied in the full wave function by the time dependent phase factor , giving 
equal amplitudes of right moving waves  and left moving waves .   So if we 
are interested in a system in which there are not equal numbers of particles moving to the right 
and to the left, we must have a wave function such that even the x-dependent part is complex.   
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A simple example is a stream of particles of energy E moving from the left in one dimension 
through a region of zero potential, encountering an upward step potential V0, where V0 < E, at the 
origin x = 0, so that classically the particles would climb the hill and continue to the right.  We 
shall represent the incoming wave function by a plane wave,  
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It proves slightly more convenient to work with wave number k rather than particle momentum 

 in scattering problems of this type.  If we now think of the classical picture of a particle 
approaching a hill (smoothing off the corners a bit) that it definitely has enough energy to 
surmount, we would perhaps expect that the wave function continues beyond x = 0 in the form  

p = k
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where k1 corresponds to the slower speed the particle will have after climbing the hill.   
 
Schrödinger’s equation requires that the wave function have no discontinuities and no kinks 
(discontinuities in slope) so the x < 0 and x > 0 wave functions must match smoothly at the 
origin. For them to have the same value, we see from above that A = B.  For them to have the 
same slope we must have kA = k1B.  Unfortunately, the only way to satisfy both these equations 
with our above wave functions is to take k = k1—which means there is no step potential at all!   
 
Question: what is wrong with the above reasoning? 
 
The answer is that we have been led astray by our mental picture of the particles as little balls 
rolling along in a potential, with enough energy to get up the hill, etc.  Schrödinger’s equation is 
a wave equation.  Building intuition about solutions should rely on experience with waves.  We 
should be thinking about a light wave going from air into glass, for example.  If we do, we 
realize that at any interface some of the light gets reflected.  This means that our expression for 
the wave function for x < 0 is incomplete, we need to add a reflected wave, giving  
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If we now match the wave function and its derivative at the origin,  we find 
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Recalling that the square of the wave function denotes probability, it is easy to check that the 
fraction of the wave that is reflected 
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Evidently, the fraction of the wave transmitted  
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Question: isn’t the amount transmitted just given by B2/A2? 
 
The answer is no.  The ratio B2/A2 gives the relative probability of finding a particle in some 
small region in the transmitted stream relative to that in the incoming stream, but the particles in 
the transmitted stream are moving more slowly, by a factor k1/k.  This means that just comparing 
the densities of particles in the transmitted and incoming streams is not enough.  The physically 
significant quantity is the probability current flowing past a given point, and this is the product 
of the density and the speed.  Therefore, the transmission coefficient is B2k1/A2k.     
 
Exercise: prove that even a step down gives rise to some reflection. 

Barriers 
If a plane wave coming in from the left encounters a step at the origin of height V0 > E, the 
incoming energy, there will be total reflection, but with an exponentially decaying wave 
penetrating some distance into the step.  Suppose now we replace the step with a barrier,  
 

V = 0  for  x < 0 
V = V0  for  0 < x < L 

V = 0  for  L < x. 
 

In this situation, the wave function will still decay exponentially into the barrier (assuming the 
barrier is thick compared to the exponential decay length), but on reaching the far end at x = L, a 
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plane wave solution is again allowed, so there is a nonzero probability of finding the particle 
beyond the barrier, moving with its original speed. This phenomenon is called tunneling, since in 
the classical picture the particle doesn’t have enough energy to get over the top of the barrier.   

Alpha decay 
A good example of tunneling, and one which helped establish the validity of quantum ideas at 
the nuclear level, is alpha decay.  Certain large unstable nuclei decay radioactively by emitting 
an alpha-particle, a tightly bound state of two protons and two neutrons.  It is thought that alpha- 
particles may exist, at least as long lived resonances, inside the nucleus.  For such a particle, the 
strong but short ranged nuclear force creates a spherical finite depth well having a steep wall 
more or less coinciding with the surface of the nucleus.  However, we must also include the 
electrostatic repulsion between the alpha-particle and the rest of the nucleus, a potential  

2
0(1/ 4 )( 2)2 /Z e rπε −  outside the nucleus.  This means that, as seen from inside the nucleus, the 

wall at the surface may not be a step but a barrier, in the sense we used the word above, a step up 
followed by a slide down the electrostatic curve. Therefore, an alpha-particle bouncing around 
inside the nucleus may have enough energy to tunnel through to the outside world. 
 

 

It is evident that the more energetic the alpha-particle is, the thinner the barrier it faces. Since the 
wave function decays exponentially in the barrier, this can make a huge difference in tunneling 
rates. It is not difficult to find the energy with which the alpha-particle hits the nuclear wall, 
because this will be the same energy with which it escapes. Therefore, if we measure the energy 
of an emitted alpha, since we think we know the shape of the barrier pretty well, we should be 
able, at least numerically, to predict the tunneling rate. The only other thing we need to know is 
how many times per second alpha's bounce off the wall. The size of the nucleus is of order 10-14 
meters, if we assume an alpha moves at, say, 107 meters per second, it will bang into the wall 
1021 times per second. This is a bit handwaving, but all alpha-radioactive nuclei are pretty much 
the same size, so perhaps it's safe to assume this will be about the same for all of them. If we do 
that, we get impressive agreement with experiment over a huge range of lifetimes. polonium212 
emits alpha's with energy 8.95 MeV, and lasts 3 10-7 seconds, thorium232 emits 4.05 MeV 
alpha's, and lasts 1.4 1010 years. These can both be understood in terms of essentially the same 
barrier being tunneled through at the different heights corresponding to the alpha energy. 
(French, QM, page 407). 
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Exercise: assume the nucleus has a charge of 90e, and a radius of 10-14 meters. Estimate the 
height of the barrier at its maximum, and the width of barrier an alpha must tunnel through for 
polonium and thorium, discussed above. (Of course, the tunneling rate is not the same as for a 
rectangular barrier-one must include the variation of the decay length with the changing barrier 
height. This is the main part of the so-called WKB approximation, see any book on quantum 
mechanics.) 
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