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Einstein’s Solution of the Specific Heat Puzzle 
The simple harmonic oscillator, a nonrelativistic particle in a potential ½Cx2,  is a system with 
wide application in both classical and quantum physics.  The simplest model is a mass sliding 

backwards and forwards on a frictionless surface, 
attached to a fixed wall by a spring, the rest position 
defined by the natural length of the spring. 
 
Many of the mechanical properties of a crystalline 
solid can be understood by visualizing it as a regular 

array of atoms, a cubic array in the simplest instance, with nearest neighbors connected by 
springs (the valence bonds) so that an atom in a cubic crystal has six such springs attached, 
parallel to the x, y, and z axes.  Provided the oscillations of the atoms are not too large, the 
springs behave well, and the atom sees itself in a potential 2 2 21 1 1 1

2 2 2 2kr kx ky kz= + + 2 .  
 
Now, as the solid is heated up, it should be a reasonable first approximation to take all the atoms 
to be jiggling about independently, and classical physics, the “Equipartition of Energy”,  would 
then assure us that at temperature T each atom would have on average energy 3kT, k being 
Boltzmann’s constant.  The specific heat per atom would then be just 3k.   
 
But this is not what is observed!  The specific heats of all solids drop dramatically at low 
temperatures.  What’s going on here?  It took Einstein to figure it out.  Recall in the earlier 
lecture on Black Body Radiation that at low temperatures the blue modes were frozen out 
because energy could only be absorbed or emitted in quanta, photons, and the energy per 
quantum was directly proportional to the frequency, so only relatively low energy oscillators 
gained energy at low temperatures.  
 
Einstein realized that exactly the same considerations must apply to mechanical oscillators, such 
as atoms in a solid.  He assumed each atom to be an independent simple harmonic oscillator, and, 
just as in the case of black body radiation, the oscillators can only absorb energies in quanta. 
Consequently, at low enough temperatures there is rarely sufficient energy in the ambient 
thermal excitations to excite the oscillators, and they freeze out, just like blue oscillators in low 
temperature black body radiation.  Einstein’s picture was later somewhat refined—the basic set 
of oscillators was taken to be standing sound wave oscillations in the solid rather than individual 
atoms (even more like black body radiation in a cavity) but the main conclusion was not 
affected.  In the more modern picture of sound waves in a solid, the “elementary” sound wave, 
analogous to the photon, is called the phonon, and has energy hf, where h is again Planck’s 
constant, and f is the sound frequency. 
 
Oscillations of molecules can usually be analyzed fairly accurately as simple harmonic 
oscillations, in particular the diatomic molecule. Of course, this picture breaks down for 
sufficiently large amplitude oscillations—eventually any molecule breaks up.   

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Oscillations2.htm
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Wave Functions for Oscillators 
What kind of wave function do we expect to see in a harmonic oscillator potential?  Whatever 
kinetic energy we give the particle, if it gets far enough from the origin the potential energy will 
win out, and the wave will decay for the particle going further out.  We know that when a 
particle penetrates a barrier of height V0, say, greater than the particle’s kinetic energy,  the wave 
function decreases exponentially into the barrier, like  , where  e x−α 2

02 ( ) /m V Eα = − .  But 
the simple harmonic oscillator potential is less penetrable than a flat barrier, because its height 
increases as x2 as the particle penetrates, so we can see from the expression for α above that for 
large x α itself increases linearly in x.  Of course, this is something of a handwaving argument, 
the solution of a differential equation for a varying potential is not just a smooth sequence of 
solutions for constant potentials, but it does suggest that the right wavefunction for the oscillator 

potential might decay as 
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spread of the wave function.   
 
The Schrödinger equation for the simple harmonic oscillator is  
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Substituting this value in Schrödinger’s equation we find 
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This equation can only be true for all x if the x2 terms are separately identically zero, that is,  
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This fixes the wave function.  Requiring the remaining terms to balance fixes the energy: 
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where ω0 is the classical oscillator frequency—given the particle mass m and the spring constant 
C, the classical equation of motion of the oscillator is  
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Taking a solution of the form  
0 0sinx x tω= , 

gives 0
C
m

ω = . 

 
An important point here is that the energy is nonzero, just as it was for the square well.  The 
central part of the wave function must have some curvature to join together the decreasing wave 
function on the left to that on the right.  This “zero point energy” is sufficient in one case to melt 
the lattice—helium is liquid even down to absolute zero temperature (checked down to 
microkelvins!) because of this wave function spread.   

Using the Spreadsheet 
The spreadsheet can be used to find the energies of the eigenstates of the simple harmonic 
oscillator in a very similar way to those for the square well.  One technical difference is that 
since the exponential increasing function diverges more violently, it is almost impossible to 
avoid it becoming dominant at large x.  However, provided the wave function is small over some 
range in x, in practice wave functions and energies are given quite accurately.  One point worth 
noting is that just as for the square well, the quantum number for the states is just the number of 
nodes, or zeros.  The argument we gave for the square well about how the extra nodes come into 
the wave function as the energy is increased also works here. 
 
For readers who have not at this point constructed the spreadsheet, which is a very educational 
exercise you should do at some point, you can download and play with one for the simple 
harmonic oscillator here: DOWNLOAD SPREADSHEET .  

Time Dependent States of the Simple Harmonic Oscillator 
Working with the time independent Schrödinger equation, as we have in the above, implies that 
we are restricting ourselves to solutions of the full Schrödinger equation which have a 
particularly simple time dependence, an overall phase factor , and are states of 
definite energy E.  However, the full time dependent Schrödinger equation is a linear equation, 
so if ψ1(x,t) and ψ2(x,t) are solutions, so is any linear combination Aψ1+Bψ2.  Assuming ψ1 and 
ψ2 are definite energy solutions for different energies E1 and E2, the combination will not 
correspond to a definite energy—a measurement of the energy will give either E1 or E2, with 
appropriate probabilities.  In the jargon, the combination is not an “eigenstate” of the energy—
but it is still a perfectly good, physically realizable wave function.   

/( ) iEtt eϕ −=

 
It is instructive to examine a combination state of this form a little more closely.  We know that 
for the ground state wave function,  
 

http://galileo.phys.virginia.edu/classes/252/SHO/Leapfrog_SHO.xls
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and for the first excited state, 
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Suppose we simply add terms of this type together (neglecting the overall normalization constant 
for now), for example 
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Looking at this wave function for t = 0, we notice that the two terms have the same sign for x > 
0, and opposite signs for x < 0.  Therefore, sketching the probability distribution for the particle’s 
position, it is heavily skewed to the right (positive x).  However, the two terms have different 
time-dependent phases, differing by a factor 0i te ω− , so after time 0/π ω  has elapsed, a factor of -1 
has evolved between the terms.  If we now look at the probability distribution |ψ|2, it will be 
skewed to the left.  In other words, if the state is not of definite energy, the probability 
distribution can vary in time.  Of course, the total probability of finding the particle somewhere 
stays the same. Note that the probability distribution swings back and forth with the period of the 
oscillator.  This discussion also implies that an ordinary pendulum, which clearly swings back 
and forth, cannot be in a state of definite energy! 

The Three Dimensional Simple Harmonic Oscillator 
It is very simple to go from the one dimensional to the three dimensional simple harmonic 
oscillator, because the potential  2 2 21 1 1 1

2 2 2 2kr kx ky kz= + + 2  is a sum of separate x, y, z potentials, 
and consequently any product ( ) ( ) ( ) ( ), ,x y z f x g y h zψ = of three solutions of the one- 
dimensional harmonic oscillator time independent Schrödinger equation will be a solution of the 
three-dimensional harmonic oscillator, with energy the sum of the three one-dimensional 
energies.  So the states are labeled with three quantum numbers, one for each direction, each can 
be 0, 1, 2, …   If we call these three quantum numbers nx, ny, nz then from what we already know 
about the one dimensional case, the energy of the three dimensional state must be 

1 1
0 02 2( ) ( ) ( )x y zn n n 1

02ω ω+ + + + + ω .  For example, the lowest energy state of the three 
dimensional harmonic oscillator, the zero point energy, is  3

02 ω .  Obviously, the higher energy 
states are very degenerate—many sets of quantum numbers correspond to the same state—
because the energy only depends on the sum of the three integer quantum numbers.  Note that 
this degeneracy arises from the symmetry of the potential, the spring constant k is the same in all 
three directions.  If the potential were of the form 2 21 1 1

2 2 2x yk x k y k z+ + 2
z  for general k’s, there 

would be no degeneracy. (Such potentials approximately describe oscillations of an atom in an 
anisotropic crystal.) 
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Another approach to the three dimensional symmetric ½kr2 simple harmonic oscillator is to try a 
separable wave function in spherical polar coordinates, ( ) ( ) ( ) ( ), ,r R rψ θ ϕ θ ϕ= Θ Φ .  This 
approach is covered in detail in later courses in quantum mechanics, and is the standard method 
for treating the hydrogen atom (where the potential cannot be written as a sum of x, y, and z 
potentials).  The angular functions describe the angular momentum of the particle.  Some insight 
can be gained by considering the two dimensional case.  Consider a pendulum swinging in the x 
direction (z is vertical).  Now give it a kick so it also has swing in the y direction.  In general, it 
will follow an elliptical path in the x, y plane.  The right kick will make it a circle.  For the 
circular orbit, the old fashioned Bohr quantization of angular momentum can be used to find the 
energy levels. 
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