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Frames of Reference and Newton’s Laws 

The cornerstone of the theory of special relativity is the Principle of Relativity: 

The Laws of Physics are the same in all inertial frames of reference. 

We shall see that many surprising consequences follow from this innocuous looking 
statement.  

Let us first, however, briefly review Newton’s mechanics in terms of frames of reference.  
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O 

A frame of reference 

 

A “frame of reference” is just a set of coordinates:  something you use to measure the 
things that matter in Newtonian problems, that is to say, positions and velocities, so we 
also need a clock. 

A point in space is specified by its three coordinates (x, y, z) and an “event” like, say, a 
little explosion, by a place and time: (x, y, z, t).  

An inertial frame is defined as one in which Newton’s law of inertia holds—that is, any 
body which isn’t being acted on by an outside force stays at rest if it is initially at rest, or 
continues to move at a constant velocity if that’s what it was doing to begin with.  An 
example of a non-inertial frame is a rotating frame, such as a carousel. 

The “laws of physics” we shall consider first are those of Newtonian mechanics, as 
expressed by Newton’s Laws of Motion, with gravitational forces and also contact forces 
from objects pushing against each other.  For example, knowing the universal 
gravitational constant from experiment (and the masses involved), it is possible from 
Newton’s Second Law,  
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force = mass × acceleration,  

to predict future planetary motions with great accuracy.  

Suppose we know from experiment that these laws of mechanics are true in one frame of 
reference.  How do they look in another frame, moving with respect to the first frame?  
To find out, we have to figure out how to get from position, velocity and acceleration in 
one frame to the corresponding quantities in the second frame.  

Obviously, the two frames must have a constant relative velocity, otherwise the law of 
inertia won’t hold in both of them.  Let’s choose the coordinates so that this velocity is 
along the x-axis of both of them.  

 

Two frames of reference relatively displaced along the x-axis 
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Notice we also throw in a clock with each frame. 

Suppose S′  is proceeding relative to S at speed v along the x-axis.  For convenience, let 
us label the moment when O′  passes O as the zero point of timekeeping.  

Now what are the coordinates of the event (x, y, z, t) in S′?  It’s easy to see t′ = t—we 
synchronized the clocks when O′ passed O.  Also, evidently, y′ = y and z′ = z, from the 
figure.  We can also see that x = x′ +vt.  Thus (x, y, z, t) in S corresponds to (x′, y′, z′, t′ ) in 
S′, where  

x′  

y′  
t′  

O′  

z′

vt 
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That’s how positions transform; these are known as the Galilean transformations. 

What about velocities ?  The velocity in S′ in the x′ direction 

( ) .x x
dx dx d dxu x vt v
dt dt dt dt
′ ′

′ = = = − = − = −
′

u v  

This is obvious anyway:  it’s just the addition of velocities formula 

.x xu u v′= +  

How does acceleration transform?  

( )x x x
x

du du dud u v
dt dt dt dt
′ ′
= = − =

′
 

 

since v is constant.  

That is to say,  

x xa a′ =  

the acceleration is the same in both frames.  This again is obvious—the acceleration is 
the rate of change of velocity, and the velocities of the same particle measured in the two 
frames differ by a constant factor-the relative velocity of the two frames.  

If we now look at the motion under gravitational forces, for example, 

1 2
1 2

ˆGm mm a r
r

=  

we get the same law on going to another inertial frame because every term in the above 
equation stays the same. 

Note that  is the rate of change of momentum—this is the same in both frames.  So, in 
a collision, say, if total momentum is conserved in one frame (the sum of individual rates 
of change of momentum is zero) the same is true in all inertial frames. 
 

ma
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The Speed of Light  

Early Ideas about Light Propagation  

As we shall soon see, attempts to measure the speed of light played an important part in 
the development of the theory of special relativity, and, indeed, the speed of light is 
central to the theory.  

The first recorded discussion of the speed of light (I think) is in Aristotle, where he 
quotes Empedocles as saying the light from the sun must take some time to reach the 
earth, but Aristotle himself apparently disagrees, and even Descartes thought that light 
traveled instantaneously.  Galileo, unfairly as usual, in Two New Sciences (page 42) has 
Simplicio stating the Aristotelian position,  

SIMP. Everyday experience shows that the propagation of light is instantaneous; for 
when we see a piece of artillery fired at great distance, the flash reaches our eyes without 
lapse of time; but the sound reaches the ear only after a noticeable interval.  

Of course, Galileo points out that in fact nothing about the speed of light can be deduced 
from this observation, except that light moves faster than sound.  He then goes on to 
suggest a possible way to measure the speed of light.  The idea is to have two people far 
away from each other, with covered lanterns.  One uncovers his lantern, then the other 
immediately uncovers his on seeing the light from the first.  This routine is to be 
practiced with the two close together, so they will get used to the reaction times involved, 
then they are to do it two or three miles apart, or even further using telescopes, to see if 
the time interval is perceptibly lengthened.  Galileo claims he actually tried the 
experiment at distances less than a mile, and couldn’t detect a time lag.  From this one 
can certainly deduce that light travels at least ten times faster than sound.  

Measuring the Speed of Light with Jupiter’s Moons  

The first real measurement of the speed of light came about half a century later, in 1676, 
by a Danish astronomer, Ole Römer, working at the Paris Observatory.  He had made a 
systematic study of Io, one of the moons of Jupiter, which was eclipsed by Jupiter at 
regular intervals, as Io went around Jupiter in a circular orbit at a steady rate.  Actually, 
Römer found, for several months the eclipses lagged more and more behind the expected 
time, until they were running about eight minutes late, then they began to pick up again, 
and in fact after about six months were running eight minutes early.  The cycle then 
repeated itself.  Römer realized the significance of the time involved-just over one year.  
This time period had nothing to do with Io, but was the time between successive closest 
approaches of earth in its orbit to Jupiter.  The eclipses were furthest behind the predicted 
times when the earth was furthest from Jupiter.  

The natural explanation was that the light from Io (actually reflected sunlight, of course) 
took time to reach the earth, and took the longest time when the earth was furthest away.  
From his observations, Römer concluded that light took about twenty-two minutes to 

http://www.jpl.nasa.gov/galileo/io/fact.html
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cross the earth’s orbit.  This was something of an overestimate, and a few years later 
Newton wrote in the Principia (Book I, section XIV): “For it is now certain from the 
phenomena of Jupiter’s satellites, confirmed by the observations of different astronomers, 
that light is propagated in succession (NOTE: I think this means at finite speed) and 
requires about seven or eight minutes to travel from the sun to the earth.”  This is 
essentially the correct value.  

Of course, to find the speed of light it was also necessary to know the distance from the 
earth to the sun.  During the 1670’s, attempts were made to measure the parallax of Mars, 
that is, how far it shifted against the background of distant stars when viewed 
simultaneously from two different places on earth at the same time.  This (very slight) 
shift could be used to find the distance of Mars from earth, and hence the distance to the 
sun, since all relative distances in the solar system had been established by observation 
and geometrical analysis.  According to Crowe (Modern Theories of the Universe, Dover, 
1994, page 30), they concluded that the distance to the sun was between 40 and 90 
million miles.  Measurements presumably converged on the correct value of about 93 
million miles soon after that, because it appears Römer (or perhaps Huygens, using 
Römer’s data a short time later) used the correct value for the distance, since the speed of 
light was calculated to be 125,000 miles per second, about three-quarters of the correct 
value of 186,300 miles per second.  This error is fully accounted for by taking the time 
light needs to cross the earth’s orbit to be twenty-two minutes (as Römer did) instead of 
the correct value of sixteen minutes.  

Starlight and Rain  

The next substantial improvement in measuring the speed of light took place in 1728, in 
England.  An astronomer James Bradley, sailing on the Thames with some friends, 
noticed that the little pennant on top of the mast changed position each time the boat put 
about, even though the wind was steady.  He thought of the boat as the earth in orbit, the 
wind as starlight coming from some distant star, and reasoned that the apparent direction 
the starlight was “blowing” in would depend on the way the earth was moving.  Another 
possible analogy is to imagine the starlight as a steady downpour of rain on a windless 
day, and to think of yourself as walking around a circular path at a steady pace.  The 
apparent direction of the incoming rain will not be vertically downwards-more will hit 
your front than your back.  In fact, if the rain is falling at, say, 15 mph, and you are 
walking at 3 mph, to you as observer the rain will be coming down at a slant so that it has 
a vertical speed of 15 mph, and a horizontal speed towards you of 3 mph.  Whether it is 
slanting down from the north or east or whatever at any given time depends on where you 
are on the circular path at that moment.  Bradley reasoned that the apparent direction of 
incoming starlight must vary in just this way, but the angular change would be a lot less 
dramatic.  The earth’s speed in orbit is about 18 miles per second, he knew from Römer’s 
work that light went at about 10,000 times that speed.  That meant that the angular 
variation in apparent incoming direction of starlight was about the magnitude of the small 
angle in a right-angled triangle with one side 10,000 times longer than the other, about 
one two-hundredth of a degree.  Notice this would have been just at the limits of Tycho’s 
measurements, but the advent of the telescope, and general improvements in engineering, 
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meant this small angle was quite accurately measurable by Bradley’s time, and he found 
the velocity of light to be 185,000 miles per second, with an accuracy of about one 
percent.  

Fast Flickering Lanterns  

The problem is, all these astronomical techniques do not have the appeal of Galileo’s idea 
of two guys with lanterns.  It would be reassuring to measure the speed of a beam of light 
between two points on the ground, rather than making somewhat indirect deductions 
based on apparent slight variations in the positions of stars.  We can see, though, that if 
the two lanterns are ten miles apart, the time lag is of order one-ten thousandth of a 
second, and it is difficult to see how to arrange that.  This technical problem was solved 
in France about 1850 by two rivals, Fizeau and Foucault, using slightly different 
techniques.  In Fizeau’s apparatus, a beam of light shone between the teeth of a rapidly 
rotating toothed wheel, so the “lantern” was constantly being covered and uncovered.  
Instead of a second lantern far away, Fizeau simply had a mirror, reflecting the beam 
back, where it passed a second time between the teeth of the wheel.  The idea was, the 
blip of light that went out through one gap between teeth would only make it back 
through the same gap if the teeth had not had time to move over significantly during the 
round trip time to the far away mirror.  It was not difficult to make a wheel with a 
hundred teeth, and to rotate it hundreds of times a second, so the time for a tooth to move 
over could be arranged to be a fraction of one ten thousandth of a second.  The method 
worked.  Foucault’s method was based on the same general idea, but instead of a toothed 
wheel, he shone the beam on to a rotating mirror.  At one point in the mirror’s rotation, 
the reflected beam fell on a distant mirror, which reflected it right back to the rotating 
mirror, which meanwhile had turned through a small angle.  After this second reflection 
from the rotating mirror, the position of the beam was carefully measured.  This made it 
possible to figure out how far the mirror had turned during the time it took the light to 
make the round trip to the distant mirror, and since the rate of rotation of the mirror was 
known, the speed of light could be figured out.  These techniques gave the speed of light 
with an accuracy of about 1,000 miles per second.  

Albert Abraham Michelson  

Albert Michelson was born in 1852 in Strzelno, Poland.  His father Samuel was a Jewish 
merchant, not a very safe thing to be at the time.  Purges of Jews were frequent in the 
neighboring towns and villages.  They decided to leave town.  Albert’s fourth birthday 
was celebrated in Murphy’s Camp, Calaveras County, about fifty miles south east of 
Sacramento, a place where five million dollars worth of gold dust was taken from one 
four acre lot.  Samuel prospered selling supplies to the miners.  When the gold ran out, 
the Michelsons moved to Virginia City, Nevada, on the Comstock lode, a silver mining 
town.  Albert went to high school in San Francisco.  In 1869, his father spotted an 
announcement in the local paper that Congressman Fitch would be appointing a candidate 
to the Naval Academy in Annapolis, and inviting applications.  Albert applied but did not 
get the appointment, which went instead to the son of a civil war veteran.  However, 
Albert knew that President Grant would also be appointing ten candidates himself, so he 
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went east on the just opened continental railroad to try his luck.  Unknown to Michelson, 
Congressman Fitch wrote directly to Grant on his behalf, saying this would really help 
get the Nevada Jews into the Republican party.  This argument proved persuasive.  In 
fact, by the time Michelson met with Grant, all ten scholarships had been awarded, but 
the President somehow came up with another one.  Of the incoming class of ninety-two, 
four years later twenty-nine graduated.  Michelson placed first in optics, but twenty-fifth 
in seamanship.  The Superintendent of the Academy, Rear Admiral Worden, who had 
commanded the Monitor in its victory over the Merrimac, told Michelson: “If in the 
future you’d give less attention to those scientific things and more to your naval gunnery, 
there might come a time when you would know enough to be of some service to your 
country.”  

Sailing the Silent Seas: Galilean Relativity  

Shortly after graduation, Michelson was ordered aboard the USS Monongahela, a sailing 
ship, for a voyage through the Caribbean and down to Rio.  According to the biography 
of Michelson written by his daughter (The Master of Light, by Dorothy Michelson 
Livingston, Chicago, 1973) he thought a lot as the ship glided across the quiet Caribbean 
about whether one could decide in a closed room inside the ship whether or not the vessel 
was moving.  In fact, his daughter quotes a famous passage from Galileo on just this 
point:  

[SALV.] Shut yourself up with some friend in the largest room below decks of some large 
ship and there procure gnats, flies, and other such small winged creatures.  Also get a 
great tub full of water and within it put certain fishes; let also a certain bottle be hung 
up, which drop by drop lets forth its water into another narrow-necked bottle placed 
underneath.  Then, the ship lying still, observe how those small winged animals fly with 
like velocity towards all parts of the room; how the fish swim indifferently towards all 
sides; and how the distilling drops all fall into the bottle placed underneath.  And casting 
anything toward your friend, you need not throw it with more force one way than 
another, provided the distances be equal; and leaping with your legs together, you will 
reach as far one way as another.  Having observed all these particulars, though no man 
doubts that, so long as the vessel stands still, they ought to take place in this manner, 
make the ship move with what velocity you please, so long as the motion is uniform and 
not fluctuating this way and that.  You will not be able to discern the least alteration in 
all the forenamed effects, nor can you gather by any of them whether the ship moves or 
stands still. ...in throwing something to your friend you do not need to throw harder if he 
is towards the front of the ship from you... the drops from the upper bottle still fall into 
the lower bottle even though the ship may have moved many feet while the drop is in the 
air ...  Of this correspondence of effects the cause is that the ship’s motion is common to 
all the things contained in it and to the air also; I mean if those things be shut up in the 
room; but in case those things were above the deck in the open air, and not obliged to 
follow the course of the ship, differences would be observed, ... smoke would stay 
behind... .  
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[SAGR.] Though it did not occur to me to try any of this out when I was at sea, I am sure 
you are right.  I remember being in my cabin wondering a hundred times whether the 
ship was moving or not, and sometimes I imagined it to be moving one way when in fact 
it was moving the other way.  I am therefore satisfied that no experiment that can be done 
in a closed cabin can determine the speed or direction of motion of a ship in steady 
motion.  

I have paraphrased this last remark somewhat to clarify it.  This conclusion of Galileo’s, 
that everything looks the same in a closed room moving at a steady speed as it does in a 
closed room at rest, is called The Principle of Galilean Relativity.  We shall be coming 
back to it.  

Michelson Measures the Speed of Light  

On returning to Annapolis from the cruise, Michelson was commissioned Ensign, and in 
1875 became an instructor in physics and chemistry at the Naval Academy, under 
Lieutenant Commander William Sampson.  Michelson met Mrs. Sampson’s niece, 
Margaret Heminway, daughter of a very successful Wall Street tycoon, who had built 
himself a granite castle in New Rochelle, NY.  Michelson married Margaret in an 
Episcopal service in New Rochelle in 1877.  

At work, lecture demonstrations had just been introduced at Annapolis.  Sampson 
suggested that it would be a good demonstration to measure the speed of light by 
Foucault’s method.  Michelson soon realized, on putting together the apparatus, that he 
could redesign it for much greater accuracy, but that would need money well beyond that 
available in the teaching demonstration budget.  He went and talked with his father in 
law, who agreed to put up $2,000.  Instead of Foucault’s 60 feet to the far mirror, 
Michelson had about 2,000 feet along the bank of the Severn, a distance he measured to 
one tenth of an inch.  He invested in very high quality lenses and mirrors to focus and 
reflect the beam.  His final result was 186,355 miles per second, with possible error of 30 
miles per second or so.  This was twenty times more accurate than Foucault, made the 
New York Times, and Michelson was famous while still in his twenties.  In fact, this was 
accepted as the most accurate measurement of the speed of light for the next forty years, 
at which point Michelson measured it again.  

The Michelson-Morley Experiment  
 

The Nature of Light  

As a result of Michelson’s efforts in 1879, the speed of light was known to be 186,350 
miles per second with a likely error of around 30 miles per second.  This measurement, 
made by timing a flash of light travelling between mirrors in Annapolis, agreed well with 
less direct measurements based on astronomical observations.  Still, this did not really 
clarify the nature of light.  Two hundred years earlier, Newton had suggested that light 
consists of tiny particles generated in a hot object, which spray out at very high speed, 
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bounce off other objects, and are detected by our eyes.  Newton’s arch-enemy Robert 
Hooke, on the other hand, thought that light must be a kind of wave motion, like sound.  
To appreciate his point of view, let us briefly review the nature of sound.  

The Wavelike Nature of Sound  

Actually, sound was already quite well understood by the ancient Greeks.  The essential 
point they had realized is that sound is generated by a vibrating material object, such as a 
bell, a string or a drumhead.  Their explanation was that the vibrating drumhead, for 
example, alternately pushes and pulls on the air directly above it, sending out waves of 
compression and decompression (known as rarefaction), like the expanding circles of 
ripples from a disturbance on the surface of a pond.  On reaching the ear, these waves 
push and pull on the eardrum with the same frequency (that is to say, the same number of 
pushes per second) as the original source was vibrating at, and nerves transmit from the 
ear to the brain both the intensity (loudness) and frequency (pitch) of the sound.  

There are a couple of special properties of sound waves (actually any waves) worth 
mentioning at this point.  The first is called interference.  This is most simply 
demonstrated with water waves.  If you put two fingers in a tub of water, just touching 
the surface a foot or so apart, and vibrate them at the same rate to get two expanding 
circles of ripples, you will notice that where the ripples overlap there are quite 
complicated patterns of waves formed.  The essential point is that at those places where 
the wave-crests from the two sources arrive at the same time, the waves will work 
together and the water will be very disturbed, but at points where the crest from one 
source arrives at the same time as the wave trough from the other source, the waves will 
cancel each other out, and the water will hardly move.  You can hear this effect for sound 
waves by playing a constant note through stereo speakers.  As you move around a room, 
you will hear quite large variations in the intensity of sound.  Of course, reflections from 
walls complicate the pattern.  This large variation in volume is not very noticeable when 
the stereo is playing music, because music is made up of many frequencies, and they 
change all the time.  The different frequencies, or notes, have their quiet spots in the 
room in different places.  The other point that should be mentioned is that high frequency 
tweeter-like sound is much more directional than low frequency woofer-like sound.  It 
really doesn’t matter where in the room you put a low-frequency woofer—the sound 
seems to be all around you anyway.  On the other hand, it is quite difficult to get a 
speaker to spread the high notes in all directions.  If you listen to a cheap speaker, the 
high notes are loudest if the speaker is pointing right at you.  A lot of effort has gone into 
designing tweeters, which are small speakers especially designed to broadcast high notes 
over a wide angle of directions.  

Is Light a Wave?  

Bearing in mind the above minireview of the properties of waves, let us now reconsider 
the question of whether light consists of a stream of particles or is some kind of wave.  
The strongest argument for a particle picture is that light travels in straight lines.  You 
can hear around a corner, at least to some extent, but you certainly can’t see.  
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Furthermore, no wave-like interference effects are very evident for light.  Finally, it was 
long known, as we have mentioned, that sound waves were compressional waves in air.  
If light is a wave, just what is waving?  It clearly isn’t just air, because light reaches us 
from the sun, and indeed from stars, and we know the air doesn’t stretch that far, or the 
planets would long ago have been slowed down by air resistance.  

Despite all these objections, it was established around 1800 that light is in fact some kind 
of wave.  The reason this fact had gone undetected for so long was that the wavelength is 
really short, about one fifty-thousandth of an inch.  In contrast, the shortest wavelength 
sound detectable by humans has a wavelength of about half an inch.  The fact that light 
travels in straight lines is in accord with observations on sound that the higher the 
frequency (and shorter the wavelength) the greater the tendency to go in straight lines.  
Similarly, the interference patterns mentioned above for sound waves or ripples on a 
pond vary over distances of the same sort of size as the wavelengths involved.  Patterns 
like that would not normally be noticeable for light because they would be on such a tiny 
scale.  In fact, it turns out, there are ways to see interference effects with light.  A 
familiar example is the many colors often visible in a soap bubble.  These come about 
because looking at a soap bubble you see light reflected from both sides of a very thin 
film of water—a thickness that turns out to be comparable to the wavelength of light.  
The light reflected from the lower layer has to go a little further to reach your eye, so that 
light wave must wave an extra time or two before getting to your eye compared with the 
light reflected from the top layer.  What you actually see is the sum of the light reflected 
from the top layer and that reflected from the bottom layer.  Thinking of this now as the 
sum of two sets of waves, the light will be bright if the crests of the two waves arrive 
together, dim if the crests of waves reflected from the top layer arrive simultaneously 
with the troughs of waves reflected from the bottom layer.  Which of these two 
possibilities actually occurs for reflection from a particular bit of the soap film depends 
on just how much further the light reflected from the lower surface has to travel to reach 
your eye compared with light from the upper surface, and that depends on the angle of 
reflection and the thickness of the film.  Suppose now we shine white light on the bubble.  
White light is made up of all the colors of the rainbow, and these different colors have 
different wavelengths, so we see colors reflected, because for a particular film, at a 
particular angle, some colors will be reflected brightly (the crests will arrive together), 
some dimly, and we will see the ones that win.  

If Light is a Wave, What is Waving?  

Having established that light is a wave, though, we still haven’t answered one of the 
major objections raised above.  Just what is waving?  We discussed sound waves as 
waves of compression in air.  Actually, that is only one case—sound will also travel 
through liquids, like water, and solids, like a steel bar.  It is found experimentally that, 
other things being equal, sound travels faster through a medium that is harder to 
compress: the material just springs back faster and the wave moves through more rapidly.  
For media of equal springiness, the sound goes faster through the less heavy medium, 
essentially because the same amount of springiness can push things along faster in a 
lighter material.  So when a sound wave passes, the material—air, water or solid—waves 
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as it goes through.  Taking this as a hint, it was natural to suppose that light must be just 
waves in some mysterious material, which was called the aether, surrounding and 
permeating everything.  This aether must also fill all of space, out to the stars, because we 
can see them, so the medium must be there to carry the light.  (We could never hear an 
explosion on the moon, however loud, because there is no air to carry the sound to us.)  
Let us think a bit about what properties this aether must have.  Since light travels so fast, 
it must be very light, and very hard to compress.  Yet, as mentioned above, it must allow 
solid bodies to pass through it freely, without aether resistance, or the planets would be 
slowing down.  Thus we can picture it as a kind of ghostly wind blowing through the 
earth.  But how can we prove any of this? Can we detect it?  

Detecting the Aether Wind: the Michelson-Morley Experiment  

Detecting the aether wind was the next challenge Michelson set himself after his triumph 
in measuring the speed of light so accurately.  Naturally, something that allows solid 
bodies to pass through it freely is a little hard to get a grip on.  But Michelson realized 
that, just as the speed of sound is relative to the air, so the speed of light must be relative 
to the aether.  This must mean, if you could measure the speed of light accurately enough, 
you could measure the speed of light travelling upwind, and compare it with the speed of 
light travelling downwind, and the difference of the two measurements should be twice 
the windspeed.  Unfortunately, it wasn’t that easy.  All the recent accurate measurements 
had used light travelling to a distant mirror and coming back, so if there was an aether 
wind along the direction between the mirrors, it would have opposite effects on the two 
parts of the measurement, leaving a very small overall effect.  There was no technically 
feasible way to do a one-way determination of the speed of light.  

At this point, Michelson had a very clever idea for detecting the aether wind.  As he 
explained to his children (according to his daughter), it was based on the following 
puzzle:  

Suppose we have a river of width w (say, 100 feet), and two swimmers who both swim at 
the same speed v feet per second (say, 5 feet per second).  The river is flowing at a steady 
rate, say 3 feet per second.  The swimmers race in the following way: they both start at 
the same point on one bank.  One swims directly across the river to the closest point on 
the opposite bank, then turns around and swims back.  The other stays on one side of the 
river, swimming upstream a distance (measured along the bank) exactly equal to the 
width of the river, then swims back to the start.  Who wins?  

Let’s consider first the swimmer going upstream and back.  Going 100 feet upstream, the 
speed relative to the bank is only 2 feet per second, so that takes 50 seconds.  Coming 
back, the speed is 8 feet per second, so it takes 12.5 seconds, for a total time of 62.5 
seconds.  
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Figure 1:  In time t, the swimmer has moved ct relative to the water, and been 
carried downstream a distance vt. 

The swimmer going across the flow is trickier.  It won’t do simply to aim directly for the 
opposite bank-the flow will carry the swimmer downstream.  To succeed in going 
directly across, the swimmer must actually aim upstream at the correct angle (of course, a 
real swimmer would do this automatically).  Thus, the swimmer is going at 5 feet per 
second, at an angle, relative to the river, and being carried downstream at a rate of 3 feet 
per second.  If the angle is correctly chosen so that the net movement is directly across, in 
one second the swimmer must have moved four feet across:  the distances covered in one 
second will form a 3,4,5 triangle.  So, at a crossing rate of 4 feet per second, the swimmer 
gets across in 25 seconds, and back in the same time, for a total time of 50 seconds.  The 
cross-stream swimmer wins.  This turns out to true whatever their swimming speed.  (Of 
course, the race is only possible if they can swim faster than the current!)  
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Figure 2:  This diagram is from the original paper. The source of light is at s, the 45 
degree line is the half-silvered mirror, b and c are mirrors and d the observer. 

Michelson’s great idea was to construct an exactly similar race for pulses of light, with 
the aether wind playing the part of the river.  The scheme of the experiment is as follows: 
a pulse of light is directed at an angle of 45 degrees at a half-silvered, half transparent 
mirror, so that half the pulse goes on through the glass, half is reflected.  These two half-
pulses are the two swimmers.  They both go on to distant mirrors which reflect them back 
to the half-silvered mirror.  At this point, they are again half reflected and half 
transmitted, but a telescope is placed behind the half-silvered mirror as shown in the 
figure so that half of each half-pulse will arrive in this telescope.  Now, if there is an 
aether wind blowing, someone looking through the telescope should see the halves of the 
two half-pulses to arrive at slightly different times, since one would have gone more 
upstream and back, one more across stream in general.  To maximize the effect, the 
whole apparatus, including the distant mirrors, was placed on a large turntable so it could 
be swung around.  

Let us think about what kind of time delay we expect to find between the arrival of the 
two half-pulses of light.  Taking the speed of light to be c miles per second relative to the 
aether, and the aether to be flowing at v miles per second through the laboratory, to go a 
distance w miles upstream will take w/(c-v) seconds, then to come back will take w/(c+v) 
seconds.  The total roundtrip time upstream and downstream is the sum of these, which 
works out to be 2wc/(c²-v²), which can also be written (2w/c)×1/(1-v²/c²).  Now, we can 
safely assume the speed of the aether is much less than the speed of light, otherwise it 
would have been noticed long ago, for example in timing of eclipses of Jupiter’s 
satellites.  This means v²/c² is a very small number, and we can use some handy 
mathematical facts to make the algebra a bit easier.  First, if x is very small compared to 
1, 1/(1-x) is very close to 1+x.  (You can check it with your calculator.)  Another fact we 
shall need in a minute is that for small x, the square root of 1+x is very close to 1+x/2.   

Putting all this together, 
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Figure 3 This is also from the original paper, and shows the expected path of light 
relative to the aether with an aether wind blowing.  

Now, what about the cross-stream time?  The actual cross-stream speed must be figured 
out as in the example above using a right-angled triangle, with the hypoteneuse equal to 
the speed c, the shortest side the aether flow speed v, and the other side the cross-stream 
speed we need to find the time to get across.  From Pythagoras’ theorem, then, the cross-
stream speed is the square root of (c²-v²).   

Since this will be the same both ways, the roundtrip cross-stream time will be 
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Looking at the two roundtrip times at the ends of the two paragraphs above, we see that 
they differ by an amount (2w/c) × v²/2c².  Now, 2w/c is just the time the light would take 
if there were no aether wind at all, say, a few millionths of a second.  If we take the 
aether windspeed to be equal to the earth’s speed in orbit, for example, v/c is about 
1/10,000, so v²/c² is about 1/100,000,000.  This means the time delay between the pulses 
reflected from the different mirrors reaching the telescope is about one-hundred-millionth 
of a few millionths of a second.  It seems completely hopeless that such a short time 
delay could be detected.  However, this turns out not to be the case, and Michelson was 
the first to figure out how to do it.  The trick is to use the interference properties of the 
lightwaves.  Instead of sending pulses of light, as we discussed above, Michelson sent in 
a steady beam of light of a single color.  This can be visualized as a sequence of ingoing 
waves, with a wavelength one fifty-thousandth of an inch or so.  Now this sequence of 
waves is split into two, and reflected as previously described.  One set of waves goes 
upstream and downstream, the other goes across stream and back.  Finally, they come 
together into the telescope and the eye.  If the one that took longer is half a wavelength 
behind, its troughs will be on top of the crests of the first wave, they will cancel, and 
nothing will be seen.  If the delay is less than that, there will still be some dimming.  
However, slight errors in the placement of the mirrors would have the same effect.  This 
is one reason why the apparatus is built to be rotated.  On turning it through 90 degrees, 
the upstream-downstream and the cross-stream waves change places.  Now the other one 
should be behind.  Thus, if there is an aether wind, if you watch through the telescope 
while you rotate the turntable, you should expect to see variations in the brightness of the 
incoming light.  

To magnify the time difference between the two paths, in the actual experiment the light 
was reflected backwards and forwards several times, like a several lap race.  For a 
diagram, click here.  For an actual photograph of the real apparatus, click here.  

Michelson calculated that an aether windspeed of only one or two miles a second would 
have observable effects in this experiment, so if the aether windspeed was comparable to 
the earth’s speed in orbit around the sun, it would be easy to see.  In fact, nothing was 
observed.  The light intensity did not vary at all.  Some time later, the experiment was 
redesigned so that an aether wind caused by the earth’s daily rotation could be detected.  
Again, nothing was seen.  Finally, Michelson wondered if the aether was somehow 
getting stuck to the earth, like the air in a below-decks cabin on a ship, so he redid the 
experiment on top of a high mountain in California.  Again, no aether wind was observed.  
It was difficult to believe that the aether in the immediate vicinity of the earth was stuck 
to it and moving with it, because light rays from stars would deflect as they went from the 
moving faraway aether to the local stuck aether.  

The only possible conclusion from this series of very difficult experiments was that the 
whole concept of an all-pervading aether was wrong from the start.  Michelson was very 
reluctant to think along these lines.  In fact, new theoretical insight into the nature of light 
had arisen in the 1860’s from the brilliant theoretical work of Maxwell, who had written 
down a set of equations describing how electric and magnetic fields can give rise to each 
other.  He had discovered that his equations predicted there could be waves made up of 

http://carnap.umd.edu:90/phil250/images/1887_intf_color.gif
http://carnap.umd.edu:90/phil250/images/Michelson_Morley_intf.gif
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electric and magnetic fields, and the speed of these waves, deduced from experiments on 
how these fields link together, would be 186,300 miles per second.   This is, of course, 
the speed of light, so it is natural to assume that light is made up of fast-varying electric 
and magnetic fields.  But this leads to a big problem: Maxwell’s equations predict a 
definite speed for light, and it is the speed found by measurements.  But what is the speed 
to be measured relative to?  The whole point of bringing in the aether was to give a 
picture for light resembling the one we understand for sound, compressional waves in a 
medium.  The speed of sound through air is measured relative to air.  If the wind is 
blowing towards you from the source of sound, you will hear the sound sooner.  If there 
isn’t an aether, though, this analogy doesn’t hold up.  So what does light travel at 186,300 
miles per second relative to?  

There is another obvious possibility, which is called the emitter theory: the light travels at 
186,300 miles per second relative to the source of the light.  The analogy here is between 
light emitted by a source and bullets emitted by a machine gun.  The bullets come out at a 
definite speed (called the muzzle velocity) relative to the barrel of the gun.  If the gun is 
mounted on the front of a tank, which is moving forward, and the gun is pointing 
forward, then relative to the ground the bullets are moving faster than they would if shot 
from a tank at rest.  The simplest way to test the emitter theory of light, then, is to 
measure the speed of light emitted in the forward direction by a flashlight moving in the 
forward direction, and see if it exceeds the known speed of light by an amount equal to 
the speed of the flashlight.  Actually, this kind of direct test of the emitter theory only 
became experimentally feasible in the nineteen-sixties.  It is now possible to produce 
particles, called neutral pions, which decay each one in a little explosion, emitting a flash 
of light.  It is also possible to have these pions moving forward at 185,000 miles per 
second when they self destruct, and to catch the light emitted in the forward direction, 
and clock its speed.  It is found that, despite the expected boost from being emitted by a 
very fast source, the light from the little explosions is going forward at the usual speed of 
186,300 miles per second.  In the last century, the emitter theory was rejected because it 
was thought the appearance of certain astronomical phenomena, such as double stars, 
where two stars rotate around each other, would be affected.  Those arguments have since 
been criticized, but the pion test is unambiguous.  The definitive experiment was carried 
out by Alvager et al., Physics Letters 12, 260 (1964).  

Einstein’s Answer  

The results of the various experiments discussed above seem to leave us really stuck.  
Apparently light is not like sound, with a definite speed relative to some underlying 
medium.  However, it is also not like bullets, with a definite speed relative to the source 
of the light.  Yet when we measure its speed we always get the same result.  How can all 
these facts be interpreted in a simple consistent way?  We shall show how Einstein 
answered this question in the next lecture. 

A detailed guide to setting up a Michelson-Morley experiment can be found at Nantes 
University.  

http://www.sciences.univ-nantes.fr/physique/enseignement/english/michp.html
http://www.sciences.univ-nantes.fr/physique/enseignement/english/michp.html
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Special Relativity  

Galilean Relativity again  

At this point in the course, we finally enter the twentieth century—Albert Einstein wrote 
his first paper on relativity in 1905.  To put his work in context, let us first review just 
what is meant by “relativity” in physics.  The first example, mentioned in a previous 
lecture, is what is called “Galilean relativity” and is nothing but Galileo’s perception that 
by observing the motion of objects, alive or dead, in a closed room there is no way to tell 
if the room is at rest or is in fact in a boat moving at a steady speed in a fixed direction.  
(You can tell if the room is accelerating or turning around.)  Everything looks the same in 
a room in steady motion as it does in a room at rest.  After Newton formulated his Laws 
of Motion, describing how bodies move in response to forces and so on, physicists 
reformulated Galileo’s observation in a slightly more technical, but equivalent, way: they 
said the laws of physics are the same in a uniformly moving room as they are in a room 
at rest.  In other words, the same force produces the same acceleration, and an object 
experiencing no force moves at a steady speed in a straight line in either case.  Of course, 
talking in these terms implies that we have clocks and rulers available so that we can 
actually time the motion of a body over a measured distance, so the physicist envisions 
the room in question to have calibrations along all the walls, so the position of anything 
can be measured, and a good clock to time motion.  Such a suitably equipped room is 
called a “frame of reference”—the calibrations on the walls are seen as a frame which 
you can use to specify the precise position of an object at a given time.  (This is the same 
as a set of “coordinates”.)  Anyway, the bottom line is that no amount of measuring of 
motions of objects in the “frame of reference” will tell you whether this is a frame at rest 
or one moving at a steady velocity.  

What exactly do we mean by a frame “at rest” anyway?  This seems obvious from our 
perspective as creatures who live on the surface of the earth—we mean, of course, at rest 
relative to fixed objects on the earth’s surface.  Actually, the earth’s rotation means this 
isn’t quite a fixed frame, and also the earth is moving in orbit at 18 miles per second.  
From an astronaut’s point of view, then, a frame fixed relative to the sun might seem 
more reasonable.  But why stop there?  We believe the laws of physics are good 
throughout the universe.  Let us consider somewhere in space far from the sun, even far 
from our galaxy.  We would see galaxies in all directions, all moving in different ways.  
Suppose we now set up a frame of reference and check that Newton’s laws still work.  In 
particular, we check that the First Law holds—that a body experiencing no force moves 
at a steady speed in a straight line.  This First law is often referred to as The Principle of 
Inertia, and a frame in which it holds is called an Inertial Frame.  Then we set up 
another frame of reference, moving at a steady velocity relative to the first one, and find 
that Newton’s laws are o.k. in this frame too.  The point to notice here is that it is not at 
all obvious which—if either—of these frames is “at rest”.  We can, however, assert that 
they are both inertial frames, after we’ve checked that in both of them, a body with no 
forces acting on it moves at a steady speed in a straight line (the speed could be zero).  In 
this situation, Michelson would have said that a frame “at rest” is one at rest relative to 
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the aether.  However, his own experiment found motion through the aether to be 
undetectable, so how would we ever know we were in the right frame?  

As we mentioned in the last lecture, in the middle of the nineteenth century there was a 
substantial advance in the understanding of electric and magnetic fields.  (In fact, this 
advance is in large part responsible for the improvement in living standards since that 
time.)  The new understanding was summarized in a set of equations called Maxwell’s 
equations describing how electric and magnetic fields interact and give rise to each other, 
just as, two centuries earlier, the new understanding of dynamics was summarized in the 
set of equations called Newton’s laws.  The important thing about Maxwell’s equations 
for our present purposes is that they predicted waves made up of electric and magnetic 
fields that moved at 3×108 meters per second, and it was immediately realized that this 
was no coincidence—light waves must be nothing but waving electric and magnetic 
fields.  (This is now fully established to be the case.)  

It is worth emphasizing that Maxwell’s work predicted the speed of light from the results 
of experiments that were not thought at the time they were done to have anything to do 
with light—experiments on, for example, the strength of electric field produced by 
waving a magnet.  Maxwell was able to deduce a speed for waves like this using methods 
analogous to those by which earlier scientists had figured out the speed of sound from a 
knowledge of the density and the springiness of air.  

Generalizing Galilean Relativity to Include Light: Special Relativity  

We now come to Einstein’s major insight: the Theory of Special Relativity.  It is 
deceptively simple.  Einstein first dusted off Galileo’s discussion of experiments below 
decks on a uniformly moving ship, and restated it as :  

The Laws of Physics are the same in all Inertial Frames.  

Einstein then simply brought this up to date, by pointing out that the Laws of Physics 
must now include Maxwell’s equations describing electric and magnetic fields as well as 
Newton’s laws describing motion of masses under gravity and other forces.  (Note for 
experts and the curious:  we shall find that Maxwell’s equations are completely unaltered 
by special relativity, but, as will become clear later, Newton’s Laws do need a bit of 
readjustment to include special relativistic phenomena.  The First Law is still o.k., the 
Second Law in the form F = ma is not, because we shall find mass varies; we need to 
equate force to rate of change of momentum (Newton understood that, of course—that’s 
the way he stated the law!).  The Third Law, stated as action equals reaction, no longer 
holds because if a body moves, its electric field, say, does not readjust instantaneously—a 
ripple travels outwards at the speed of light.  Before the ripple reaches another charged 
body, the electric forces between the two will be unbalanced.  However, the crucial 
consequence of the Third Law—the conservation of momentum when two bodies 
interact, still holds.  It turns out that the rippling field itself carries momentum, and 
everything balances.) 
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Demanding that Maxwell’s equations be satisfied in all inertial frames has one major 
consequence as far as we are concerned. As we stated above, Maxwell’s equations give 
the speed of light to be 3×108 meters per second.  Therefore, demanding that the laws of 
physics are the same in all inertial frames implies that the speed of any light wave, 
measured in any inertial frame, must be 3×108 meters per second.  

This then is the entire content of the Theory of Special Relativity: the Laws of Physics 
are the same in any inertial frame, and, in particular, any measurement of the speed of 
light in any inertial frame will always give 3×108 meters per second.   

You Really Can’t Tell You’re Moving!  

Just as Galileo had asserted that observing gnats, fish and dripping bottles, throwing 
things and generally jumping around would not help you to find out if you were in a 
room at rest or moving at a steady velocity, Einstein added that no kind of observation at 
all, even measuring the speed of light across your room to any accuracy you like, would 
help find out if your room was “really at rest”.  This implies, of course, that the concept 
of being “at rest” is meaningless.  If Einstein is right, there is no natural rest-frame in the 
universe.  Naturally, there can be no “aether”, no thin transparent jelly filling space and 
vibrating with light waves, because if there were, it would provide the natural rest frame, 
and affect the speed of light as measured in other moving inertial frames as discussed 
above.  

So we see the Michelson-Morley experiment was doomed from the start.  There never 
was an aether wind.  The light was not slowed down by going “upstream”—light always 
travels at the same speed, which we shall now call c,  

c = 3×108 meters per second 

to save writing it out every time.  This now answers the question of what the speed of 
light, c, is relative to.  We already found that it is not like sound, relative to some 
underlying medium.  It is also not like bullets, relative to the source of the light (the 
discredited emitter theory).  Light travels at c relative to the observer, since if the 
observer sets up an inertial frame (clocks, rulers, etc.) to measure the speed of light he 
will find it to be c.  (We always assume our observers are very competent 
experimentalists!)  

Truth and Consequences  

The Truth we are referring to here is the seemingly innocuous and plausible sounding 
statement that all inertial frames are as good as each other—the laws of physics are the 
same in all of them—and so the speed of light is the same in all of them.  As we shall 
soon see, this Special Theory of Relativity has some surprising consequences, which 
reveal themselves most dramatically when things are moving at relative speeds 
comparable to the speed of light.  Einstein liked to explain his theory using what he 
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called “thought experiments” involving trains and other kinds of transportation moving at 
these speeds (technically unachievable so far!), and we shall follow his general approach.  

To begin with, let us consider a simple measurement of the speed of light carried out at 
the same time in two inertial frames moving at half the speed of light relative to each 
other.  The setup is as follows: on a flat piece of ground, we have a flashlight which emits 
a blip of light, like a strobe.  We have two photocells, devices which click and send a 
message down a wire when light falls on them.  The photocells are placed 10 meters apart 
in the path of the blip of light, they are somehow wired into a clock so that the time taken 
by the blip of light to travel from the first photocell to the second, in other words, the 
time between clicks, can be measured.  From this time and the known distance between 
them, we can easily find the speed of the blip of light. 

 

speed c/2 

The speed of the same blip of light is measured by two observers, having 
relative speed c/2.   Both measure the time the blip takes from one photocell 
to a second one 10 meters further on.  Both find the speed to be c. 

photocells on ground light blip  light source 

Meanwhile, there is another observer, passing overhead in a spaceship traveling at half 
the speed of light.  She is also equipped with a couple of photocells, placed 10 meters 
apart on the bottom of her spaceship as shown, and she is able to measure the speed of 
the same blip of light, relative to her frame of reference (the spaceship).  The observer on 
the spaceship will measure the blip of light to be traveling at c relative to the spaceship, 
the observer on the ground will measure the same blip to be traveling at c relative to the 
ground.  That is the unavoidable consequence of the Theory of Relativity.  

(Note: actually the picture above is not quite the way it would really look.  As we shall 
find, objects moving at relativistic speeds are contracted, and this combined with the 
different times light takes to reach the eye from different parts of the ship would change 
the ship’s appearance.   But this does not affect the validity of the statements above.) 
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Special Relativity: What Time is it?  

Special Relativity in a Nutshell  

Einstein’s Theory of Special Relativity, discussed in the last lecture, may be summarized 
as follows:  

The Laws of Physics are the same in any Inertial Frame of Reference.  (Such frames 
move at steady velocities with respect to each other.)   

These Laws include in particular Maxwell’s Equations describing electric and magnetic 
fields, which predict that light always travels at a particular speed c, equal to about 3×108 

meters per second, that is,186,300 miles per second.   

It follows that any measurement of the speed of any flash of light by any observer 
in any inertial frame will give the same answer c.  

We have already noted one counter-intuitive consequence of this, that two different 
observers moving relative to each other, each measuring the speed of the same blob of 
light relative to himself, will both get c, even if their relative motion is in the same 
direction as the motion of the blob of light. 

We shall now explore how this simple assumption changes everything we thought we 
understood about time and space. 

A Simple but Reliable Clock  

We mentioned earlier that each of our (inertial) frames of reference is calibrated (had 
marks at regular intervals along the walls) to measure distances, and has a clock to 
measure time.  Let us now get more specific about the clock—we want one that is easy to 
understand in any frame of reference.  Instead of a pendulum swinging back and forth, 
which wouldn’t work away from the earth’s surface anyway, we have a blip of light 
bouncing back and forth between two mirrors facing each other.  We call this device a 
light clock.  To really use it as a timing device we need some way to count the bounces, 
so we position a photocell at the upper mirror, so that it catches the edge of the blip of 
light.  The photocell clicks when the light hits it, and this regular series of clicks drives 
the clock hand around, just as for an ordinary clock.  Of course, driving the photocell will 
eventually use up the blip of light, so we also need some provision to reinforce the blip 
occasionally, such as a strobe light set to flash just as it passes and thus add to the 
intensity of the light.  Admittedly, this may not be an easy way to build a clock, but the 
basic idea is simple.  
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mirrors 

Photocell 
clicks when 
light hits 
top mirror 

Blip of light 
bouncing 
between 
mirrors 

Einstein’s Light Clock:  a blip of light bounces between two 
parallel mirrors w meters apart; each time it hits the top 
mirror, the photocell moves the clock on one click. 
 
Time between clicks:  2w/c.   

w 

 

It’s easy to figure out how frequently our light clock clicks.  If the two mirrors are a 
distance w apart, the round trip distance for the blip from the photocell mirror to the other 
mirror and back is 2w.  Since we know the blip always travels at c, we find the round trip 
time to be 2w/c, so this is the time between clicks.  This isn’t a very long time for a 
reasonable sized clock!  The crystal in a quartz watch “clicks “ of the order of 10,000 
times a second.  That would correspond to mirrors about nine miles apart, so we need our 
clock to click about 1,000 times faster than that to get to a reasonable size.  Anyway, let 
us assume that such purely technical problems have been solved.  

Looking at Somebody Else’s Clock  

Let us now consider two observers, Jack and Jill, each equipped with a calibrated inertial 
frame of reference, and a light clock. To be specific, imagine Jack standing on the ground 
with his light clock next to a straight railroad line, while Jill and her clock are on a large 
flatbed railroad wagon which is moving down the track at a constant speed v. Jack now 
decides to check Jill’s light clock against his own. He knows the time for his clock is 
2w/c between clicks. Imagine it to be a slightly misty day, so with binoculars he can 
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actually see the blip of light bouncing between the mirrors of Jill’s clock. How long does 
he think that blip takes to make a round trip? The one thing he’s sure of is that it must be 
moving at c = 186,300 miles per second, relative to him—that’s what Einstein tells him. 
So to find the round trip time, all he needs is the round trip distance. This will not be 2w, 
because the mirrors are on the flatbed wagon moving down the track, so, relative to Jack 
on the ground, when the blip gets back to the top mirror, that mirror has moved down the 
track some since the blip left, so the blip actually follows a zigzag path as seen from the 
ground.  

 

Clock at rest   

w 

Clock moving at v   

ct   

vt   

Two identical light clocks: one at rest, one moving relative to us.  The light 
blips in both travel at the same speed relative to us, the one in the moving 
clock goes further, so must take longer between clicks.  
 
t is the time from one mirror to the other.   

Suppose now the blip in Jill’s clock on the moving flatbed wagon takes time t to get from 
the bottom mirror to the top mirror as measured by Jack standing by the track. Then the 
length of the “zig” from the bottom mirror to the top mirror is necessarily ct, since that is 
the distance covered by any blip of light in time t.  Meanwhile, the wagon has moved 
down the track a distance vt, where v is the speed of the wagon. This should begin to look 
familiar—it is precisely the same as the problem of the swimmer who swims at speed c 
relative to the water crossing a river flowing at v!  We have again a right-angled triangle 
with hypotenuse ct, and shorter sides vt and w.  

From Pythagoras, then,  
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c²t² = v²t² + w² 

so  

t²(c² - v²) = w² 

or  

t²(1 - v²/c²) = w²/c²  

and, taking the square root of each side, then doubling to get the round trip time, we 
conclude that Jack sees the time between clicks for Jill’s clock to be:  

2 2

2 1time between clicks for moving clock .
1 /

w
c v c

=
−

 

Of course, this gives the right answer 2w/c for a clock at rest, that is, v = 0.   

This means that Jack sees Jill’s light clock to be going slow—a longer time between 
clicks—compared to his own identical clock.  Obviously, the effect is not dramatic at real 
railroad speeds.  The correction factor is 2 21 /v c− , which differs from 1 by about one 
part in a trillion even for a bullet train!  Nevertheless, the effect is real and can be 
measured, as we shall discuss later.  

It is important to realize that the only reason we chose a light clock, as opposed to some 
other kind of clock, is that its motion is very easy to analyze from a different frame.  Jill 
could have a collection of clocks on the wagon, and would synchronize them all.  For 
example, she could hang her wristwatch right next to the face of the light clock, and 
observe them together to be sure they always showed the same time.  Remember, in her 
frame her light clock clicks every 2w/c seconds, as it is designed to do.  Observing this 
scene from his position beside the track, Jack will see the synchronized light clock and 
wristwatch next to each other, and, of course, note that the wristwatch is also running 
slow by the factor 2 21 /v c− .   In fact, all her clocks, including her pulse, are slowed 
down by this factor according to Jack.  Jill is aging more slowly because she’s moving!  

But this isn’t the whole story—we must now turn everything around and look at it from 
Jill’s point of view.  Her inertial frame of reference is just as good as Jack’s.  She sees 
his light clock to be moving at speed v (backwards) so from her point of view his light 
blip takes the longer zigzag path, which means his clock runs slower than hers.  That is to 
say, each of them will see the other to have slower clocks, and be aging more slowly.  
This phenomenon is called time dilation.  It has been verified in recent years by flying 
very accurate clocks around the world on jetliners and finding they register less time, by 
the predicted amount, than identical clocks left on the ground.  Time dilation is also very 
easy to observe in elementary particle physics, as we shall discuss in the next section.  
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Fitzgerald Contraction  

Consider now the following puzzle: suppose Jill’s clock is equipped with a device that 
stamps a notch on the track once a second.  How far apart are the notches?  From Jill’s 
point of view, this is pretty easy to answer.  She sees the track passing under the wagon at 
v meters per second, so the notches will of course be v meters apart.  But Jack sees things 
differently. He sees Jill’s clocks to be running slow, so he will see the notches to be 
stamped on the track at intervals of  2 21/ 1 /v c−  seconds (so for a relativistic train 
going at v = 0.8c, the notches are stamped at intervals of 5/3 = 1.67 seconds). Since Jack 
agrees with Jill that the relative speed of the wagon and the track is v, he will assert the 
notches are not v meters apart, but 2 2/ 1 /v v− c  meters apart, a greater distance.  Who is 
right?  It turns out that Jack is right, because the notches are in his frame of reference, so 
he can wander over to them with a tape measure or whatever, and check the distance.  
This implies that as a result of her motion, Jill observes the notches to be closer together 
by a factor 2 21 /v c−  than they would be at rest.  This is called the Fitzgerald 
contraction, and applies not just to the notches, but also to the track and to Jack—
everything looks somewhat squashed in the direction of motion!  

Experimental Evidence for Time Dilation: Dying Muons  

The first clear example of time dilation was provided over fifty years ago by an 
experiment detecting muons.  These particles are produced at the outer edge of our 
atmosphere by incoming cosmic rays hitting the first traces of air.  They are unstable 
particles, with a “half-life” of 1.5 microseconds (1.5 millionths of a second), which 
means that if at a given time you have 100 of them, 1.5 microseconds later you will have 
about 50, 1.5 microseconds after that 25, and so on.  Anyway, they are constantly being 
produced many miles up, and there is a constant rain of them towards the surface of the 
earth, moving at very close to the speed of light.  In 1941, a detector placed near the top 
of Mount Washington (at 6000 feet above sea level) measured about 570 muons per hour 
coming in.  Now these muons are raining down from above, but dying as they fall, so if 
we move the detector to a lower altitude we expect it to detect fewer muons because a 
fraction of those that came down past the 6000 foot level will die before they get to a 
lower altitude detector.  Approximating their speed by that of light, they are raining down 
at 186,300 miles per second, which turns out to be, conveniently, about 1,000 feet per 
microsecond.  Thus they should reach the 4500 foot level 1.5 microseconds after passing 
the 6000 foot level, so, if half of them die off in 1.5 microseconds, as claimed above, we 
should only expect to register about 570/2 = 285 per hour with the same detector at this 
level.  Dropping another 1500 feet, to the 3000 foot level, we expect about 280/2 = 140 
per hour, at 1500 feet about 70 per hour, and at ground level about 35 per hour.  (We 
have rounded off some figures a bit, but this is reasonably close to the expected value.)  

To summarize: given the known rate at which these raining-down unstable muons decay, 
and given that 570 per hour hit a detector near the top of Mount Washington, we only 
expect about 35 per hour to survive down to sea level.  In fact, when the detector was 
brought down to sea level, it detected about 400 per hour!  How did they survive?  The 
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reason they didn’t decay is that in their frame of reference, much less time had passed.  
Their actual speed is about 0.994c, corresponding to a time dilation factor of about 9, so 
in the 6 microsecond trip from the top of Mount Washington to sea level, their clocks 
register only 6/9 = 0.67 microseconds.  In this period of time, only about one-quarter of 
them decay.  

What does this look like from the muon’s point of view?  How do they manage to get so 
far in so little time?  To them, Mount Washington and the earth’s surface are approaching 
at 0.994c, or about 1,000 feet per microsecond.  But in the 0.67 microseconds it takes 
them to get to sea level, it would seem that to them sea level could only get 670 feet 
closer, so how could they travel the whole 6000 feet from the top of Mount Washington?  
The answer is the Fitzgerald contraction.  To them, Mount Washington is squashed in a 
vertical direction (the direction of motion) by a factor of  2 21 /v c− ,  the same as the 
time dilation factor, which for the muons is about 9.  So, to the muons, Mount 
Washington is only 670 feet high—this is why they can get down it so fast!  

Special Relativity: Synchronizing Clocks 

Suppose we want to synchronize two clocks that are some distance apart.  

We could stand beside one of them and look at the other through a telescope, but we’d 
have to remember in that case that we are seeing the clock as it was when the light left it, 
and correct accordingly. 

Another way to be sure the clocks are synchronized, assuming they are both accurate, is 
to start them together. How can we do that? We could, for example, attach a photocell to 
each clock, so when a flash of light reaches the clock, it begins running.  

The clocks are triggered when the flash of light from the central bulb 
reaches the attached photocells. 

 

If, then, we place a flashbulb at the midpoint of the line joining the two clocks, and flash 
it, the light flash will take the same time to reach the two clocks, so they will start at the 
same time, and therefore be synchronized.  
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Let us now put this whole arrangement - the two clocks and the midpoint flashbulb - on a 
train, and we suppose the train is moving at some speed v to the right, say half the speed 
of light or so.  

Let’s look carefully at the clock-synchronizing operation as seen from the ground. In fact, 
an observer on the ground would say the clocks are not synchronized by this operation! 
The basic reason is that he would see the flash of light from the middle of the train 
traveling at c relative to the ground in each direction, but he would also observe the back 
of the train coming at v to meet the flash, whereas the front is moving at v away from the 
bulb, so the light flash must go further to catch up.  

In fact, it is not difficult to figure out how much later the flash reaches the front of the 
train compared with the back of the train, as viewed from the ground. First recall that as 
viewed from the ground the train has length 2 21 /L v c− .   

vtB ctB

Flash going to back of train 

The train is moving to the right: the central bulb emits a flash 
of light.  Seen from the ground, the part of the flash moving 
towards the rear travels at c, the rear travels at v to meet it. 

 

Letting tB be the time it takes the flash to reach the back of the train, it is clear from the 
figure that  

B

2

21
2B B
L vvt ct

c
+ = −  

from which tB is given by  B

2

2

1 1 .
2B
L vt

c v c
= −

+
 

In a similar way, the time for the flash of light to reach the front of the train is (as 
measured by a ground observer)  

2

2

1 1 .
2F
L vt

c v c
= −

−
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Therefore the time difference between the starting of the two clocks, as seen from the 
ground, is 

( )

( )

( )
( )

( )

2

2
2 2

2
22

2 2

1 1 1 /
2

2 1 /
2

2 1 1 /
21 /

1 .
1 /

F B
Lt t v c

c v c v
v L v c

c v
v L v c

c v c
vL
c v c

⎛ ⎞− = − −⎜ ⎟− +⎝ ⎠
⎛ ⎞= −⎜ ⎟−⎝ ⎠

= −
−

=
−

 

Remember, this is the time difference between the starting of the train’s back clock and 
its front clock as measured by an observer on the ground with clocks on the ground.  
However, to this observer the clocks on the train appear to tick more slowly, by the factor 

( )21 /v c− , so that although the ground observer measures the time interval between the 
starting of the clock at the back of the train and the clock at the front as 

( ) ( )( 22/ 1/ 1 /vL c v c− ) seconds, he also sees the slow running clock at the back actually 

reading  seconds at the instant he sees the front clock to start.  2/vL c

 

To summarize: as seen from the ground, the two clocks on the train (which is moving at v 

in the x-direction) are running slowly, registering only ( )21 /v c−  seconds for each 
second that passes. Equally important, the clocks—which are synchronized by an 
observer on the train—appear unsynchronized when viewed from the ground, the one at 
the back of the train reading  seconds ahead of the clock at the front of the train, 
where L is the rest length of the train (the length as measured by an observer on the train). 

2/vL c

Note that if L = 0, that is, if the clocks are together, both the observers on the train and 
those on the ground will agree that they are synchronized.  We need a distance between 
the clocks, as well as relative motion, to get a disagreement about synchronization. 

The Lorentz Transformations 

Problems with the Galilean Transformations 

We have already seen that Newtonian mechanics is invariant under the Galilean 
transformations relating two inertial frames moving with relative speed v in the x-
direction,  
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.

x x vt
y y
z z
t t

′ ′= +
′=
′=
′=

 

However, these transformations presuppose that time is a well-defined universal concept, 
that is to say, it’s the same time everywhere, and all observers can agree on what time it 
is.  Once we accept the basic postulate of special relativity, however, that the laws of 
physics, including Maxwell’s equations, are the same in all inertial frames of reference, 
and consequently the speed of light has the same value in all inertial frames, then as we 
have seen, observers in different frames do not agree on whether clocks some distance 
apart are synchronized.  Furthermore, as we have discussed, measurements of moving 
objects are compressed in the direction of motion by the Lorentz-Fitzgerald contraction 
effect.  Obviously, the above equations are too naïve!  We must think more carefully 
about time and distance measurement, and construct new transformation equations 
consistent with special relativity. 

Our aim here, then, is to find a set of equations analogous to those above giving the 
coordinates of an event (x, y, z, t) in frame S, for example, a small bomb explosion, as 
functions of the coordinates (x ,y, z, t) of the same event measured in the parallel frame S′ 
which is moving at speed v along the x-axis of frame S.  Observers O at the origin in 
frame S and O′ at the origin in frame S synchronize their clocks at t = t′  =0, at the instant 
they pass each other, that is, when the two frames coincide . (Using our previous 
notation, O is Jack and O′ is Jill.) 

To determine the time t′  at which the bomb exploded in her frame, O′ could determine 
the distance of the point (x′, y′, z′) from the origin, and hence how long it would take light 
from the explosion to reach her at the origin. A more direct approach (which is helpful in 
considering transformations between different frames) is to imagine O′  to have a 
multitude of helpers, with an array of clocks throughout the frame, which have all been 
synchronized by midpoint flashes as described in the previous lecture.  Then the event—
the bomb explosion—will be close to a clock, and that local clock determines the time t′ 
of the event, so we do not need to worry about timing a light signal. 

In frame S′, then, O′ and her crew have clocks all along the x′ -axis (as well as 
everywhere else) and all synchronized:  

 

Now consider how this string of clocks appears as viewed by O from frame S. First, since 
they are all moving at speed v, they will be registering time more slowly by the usual 
time dilation factor 2 21 /v c−  than O’s own physically identical clocks. Second, they 
will not be synchronized.  From the clocks on a train argument in the last lecture, if the 
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clocks are L apart as measured by O′, successive clocks to the right (the direction of 
motion) will be behind by Lv/c2 as observed by O.  

 

It should be mentioned that this lack of synchronization as viewed from another frame 
only occurs for clocks separated in the direction of relative motion. Consider two clocks 
some distance apart on the z′ axis of S′.  If they are synchronized in S′ by both being 
started by a flash of light from a bulb half way between them, it is clear that as viewed 
from S the light has to go the same distance to each of the clocks, so they will still be 
synchronized (although they will start later by the time dilation factor).  

Deriving the Lorentz Transformations  

Let us now suppose that O′ and her crew observe a small bomb to explode in S′ at (x′, 0, 
0, t′).  In this section, we shall find the space coordinates and time (x, y, z, t) of this event 
as observed by O in the frame S.  (As above, S′ moves relative to S at speed v along the x-
axis).  In other words, we shall derive the Lorentz transformations—which are just the 
equations giving the four coordinates of an event in one inertial frame in terms of the 
coordinates of the same event in another inertial frame.  We take y′ ,z′  zero because they 
transform trivially—there is no Lorentz contraction perpendicular to the motion, so y = y′  
and z = z′ .  

First, we consider at what time the bomb explodes as measured by O.  O′’s crew found 
the bomb to explode at time t′  as measured by a local clock, that is, one located at the site 
of the explosion, x′ .  Now, as observed by O from frame S, O′’s clock at x′  is not 
synchronized with O′’s clock at the origin S′.  When the bomb explodes and the clock at 
x′  reads t′ , O will see O′’s origin clock to read   What does O′s own clock 
read at this point? Recall that O, O′ synchronized their origin clocks at the moment they 
were together, at   Subsequently, O will have observed O′’s clock to be running 
slowly by the time-dilation factor. Therefore, when at the instant of the explosion he sees 
O′’s origin clock to be reading  he will find that the true time t in his frame is 
equal to this appropriately scaled to allow for time dilation, that is,  

2/t vx c′ ′+ .

,

0.t t′= =

2/t vx c′ ′+

2

2 2

/ .
1 /

t vx ct
v c

′ ′+
=

−
 

This is the first of the Lorentz transformations. 

The second question is: where does O observe the explosion to occur? 

Since it occurs at time t after O′ passed O, O′ is vt meters beyond O at the time of the 
explosion.  The explosion takes place x′ meters beyond O′, as measured by O′, but of 
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course O will see that distance x′  as contracted to 2 21 /x v c′ −  since it’s in a moving 
frame. 

Therefore O observes the explosion at point x given by 

2 21 / .x vt x v c′= + −  

This can be written as an equation for x in terms of x′ , t′  by substituting for t using the 
first Lorentz transformation above, to give 

2 2
.

1 /
x vtx

v c

′ ′+
=

−
 

Therefore, we have found the Lorentz transformations expressing the coordinates (x, y, z, 
t) of an event in frame S in terms of the coordinates (x′, y′, z′, t′) of the same event in 
frame S′:  

2 2

2

2 2

1 /

/ .
1 /

x vtx
v c

y y
z z

t vx ct
v c

′ ′+
=

−
′=
′=

′ ′+
=

−

 

Notice that nothing in the above derivation depends on the x-velocity v of S′ relative to S 
being positive.  Therefore, the inverse transformation (from (x,y,z,t) to (x′,  y′,  z′, t′ )) has 
exactly the same form as that given above with v replaced by -v.  

Spheres of Light  

Consider now the following scenario: suppose that as O′ passes O (the instant both of 
them agree is at time t′  = t = 0) O′ flashes a bright light, which she observes to create an 
expanding spherical shell of light, centered on herself (imagine it’ s a slightly foggy day, 
so she can see how the ripple of light travels outwards). At time t′, then, O′ (or, to be 
precise, her local observers out there in the frame) will see a shell of light of radius ct′, 
that is to say, they will see the light to have reached all points (x′, y′, z′ ) on the surface 

2 2 2 2 .2x y z c t′ ′ ′ ′+ + =  

Question: how do O and his observers stationed throughout the frame S see this light as 
rippling outwards? 
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To answer this question, notice that the above equation for where the light is in frame S′ 
at a particular time t′ can be written 

2 2 2 2 2 0,x y z c t′ ′ ′ ′+ + − =  

and can be thought of as a surface in the four dimensional (x′, y′, z′, t′) space, the totality 
of all the “events” of the light reaching any particular point. Now, to find the 
corresponding surface of events in the four dimensional (x, y, z, t) space, all we have to 
do is to change from one set of variables to the other using the Lorentz transformations:  

2 2

2

2 2

1 /

/ .
1 /

x vtx
v c

y y
z z

t vx ct
v c

−′ =
−

′ =
′ =

−′ =
−

 

On putting these values of (x′, y′, z′, t′) into 2 2 2 2 2 0,x y z c t′ ′ ′ ′+ + − =  we find that the 
corresponding surface of events in (x, y, z, t) space is: 

2 2 2 2 2 0.x y z c t+ + − =  

This means that at time t, O and his observers in frame S will say the light has reached a 
spherical surface centered on O.  

How can O′ and O, as they move further apart, possibly both be right in maintaining that 
at any given instant the outward moving light pulse has a spherical shape, each saying it 
is centered on herself or himself?  

Imagine the light shell as O′ sees it—at the instant t′ she sees a sphere of radius r′, in 
particular she sees the light to have reached the spots +r′ and –r′ on the x′  axis.  But from 
O′’s point of view the expanding light sphere does not reach the point +r′ at the same 
time it reaches –r′!  (This is just the old story of synchronizing the two clocks at the front 
and back of the train one more time.)  That is why O does not see O′’s sphere:  the arrival 
of the light at the sphere of radius r′ around O′ at time t′  corresponds in S to a continuum 
of different events happening at different times.  

Lorentz Invariants  

We found above that for an event (x′, y′, z′, t′) for which 2 2 2 2 2 0,x y z c t′ ′ ′ ′+ + − =  the 
coordinates of the event (x, y, z, t) as measured in the other frame S satisfy 

  The quantity 2 2 2 2 2 0.x y z c t+ + − = 2 2 2 2 2x y z c t+ + −  is said to be a Lorentz invariant:  
it doesn’t vary on going from one frame to another.  
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A simple two-dimensional analogy to this invariant is given by considering two sets of 
axes, Oxy and Ox′ y′  having the same origin O, but the axis Ox′  is at an angle to Ox, so 
one set of axes is the same as the other set but rotated.  The point P with coordinates (x,y) 
has coordinates (x′, y′ ) measured on the Ox′ y′  axes.  The square of the distance of the 
point P from the common origin O is x2 + y2 and is also x′ 2 + y′ 2, so for the 
transformation from coordinates (x, y) to (x′, y′ ), x2 + y2 is an invariant.  Similarly, if a 
point P1 has coordinates (x1, y1) and (x1′, y1′) and another point P2 has coordinates (x2, y2) 
and (x2′, y2′) then clearly the two points are the same distance apart as measured with 
respect to the two sets of axes, so 

( ) ( ) ( ) (2 2 2
1 2 1 2 1 2 1 2 .x x y y x x y y )2′ ′ ′ ′− + − = − + −  

P 

O 

y′  y 

x 

x′  

 

This is really obvious:  the distance between two points in an ordinary plane can’t depend 
on the angle at which we choose to set our coordinate axes. 

The Lorentz analog of this, dropping the y,z coordinates, can be written 

( ) ( ) ( ) ( )2 2 2 22 2
1 2 1 2 1 2 1 2 ,c t t x x c t t x x s′ ′ ′ ′− − − = − − − = 2  

say, where s is some sort of measure of the “distance” between the two events (x1, t1) and 
(x2, t2).  

This s is sometimes called the “space-time interval”.  The big difference from the two-
dimensional rotation case is that s2 can be positive or negative.  For s2 negative just 
taking s as its square root the “distance” itself would be imaginary—so we need to think 
this through carefully.  As we shall see below, it’s clear enough what to do in any 
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particular case—the cases of spacelike and timelike separated events are best dealt with 
separately, at least to begin with. 

Consider first two events simultaneous in frame S′, so t1′ = t2′.  They will not be 
simultaneous in frame S, but they will satisfy 

( ) ( )2 22
1 2 1 2 0.x x c t t− − − >  

We say the two events are spacelike separated.  This means that they are sufficiently 
removed spatially that a light signal could not have time between them to get from one to 
the other, so one of these events could not be the cause of the other.  The sequence of two 
events can be different in different frames if the events are spacelike separated.  Consider 
again the starting of the two clocks at the front and back of a train as seen from the 
ground: the back clock starts first.  Now imagine viewing this from a faster train 
overtaking the clock train—now the front clock will be the first to start.  The important 
point is that although these events appear to occur in a different order in a different 
frame, neither of them could be the cause of the other, so cause and effect are not 
switched around.  

Consider now two events which occur at the same place in frame S′ at different times,  
( ) (1 1 2 1,  and , .)x t x′ ′ ′ ′t   Then in frame S:  

( ) ( ) ( )2 2 22 2
1 2 1 2 1 2 0.c t t x x c t t′ ′− − − = − >  

These events are said to be timelike separated.  There is no frame in which they are 
simultaneous.  “Cause and effect” events are timelike separated.  

The Light Cone  

Let us try to visualize the surface in four-dimensional space described by the outgoing 
shell of light from a single flash, 

2 2 2 2 2 0.x y z c t+ + − =  

It is helpful to think about a simpler situation, the circular ripple spreading on the surface 
of calm water from a pebble falling in. Taking c here to be the speed of the water waves, 
it is easy to see that at time t after the splash the ripple is at  

2 2 2 2 0.x y c t+ − =  

Now think about this as a surface in the three-dimensional space (x, y, t). The plane 
corresponding to time t cuts this surface in a circle of radius ct.  This means the surface is 
a cone with its point at the origin.  The four-dimensional space flash-of-light surface is 
not so easy to visualize, but is clearly the higher-dimensional analog: the plane surface 
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corresponding to time t cuts it in a sphere instead of a circle. This surface is called the 
lightcone.  

We have stated above that the separation of a point P (x, y, z, t) from the origin is 
spacelike if and timelike if 2 2 2 2 2 0x y z c t+ + − > 2 2 2 2 2 0.x y z c t+ + − <    It is said to be 
lightlike if   Points on the light cone described above are lightlike 
separated from the origin.  To be precise, the points corresponding to an outgoing shell of 
light from a flash at the origin at t = 0 form the forward light cone. Since the equation 
depends only on t

2 2 2 2 2 0.x y z c t+ + − =

2, there is a solution with t negative, the “backward light cone”, just the 
reflection of the forward light cone in the plane t = 0. 

Possible causal connections are as follows: an event at the origin (0, 0, 0, 0) could cause 
an event in the forward light cone: so that is the “future”, as seen from the origin.  Events 
in the backward light cone—the “past”—could cause an event at the origin. There can be 
no causal link between an event at the origin and an event outside the light cones, since 
the separation is spacelike: outside the light cones is “elsewhere” as viewed from the 
origin.  

Time Dilation: A Worked Example  

“Moving Clocks Run Slow” plus “Moving Clocks Lose Synchronization” 
plus “Length Contraction” leads to consistency!  

The object of this exercise is to show explicitly how it is possible for two observers in 
inertial frames moving relative to each other at a relativistic speed to each see the other’s 
clocks as running slow and as being unsynchronized, and yet if they both look at the 
same clock at the same time from the same place (which may be far from the clock), they 
will agree on what time it shows! 

Suppose that in Jack’s frame we have two synchronized clocks C1 and C2 set 18 x 108 
meters apart (that’s about a million miles, or 6 light-seconds).  Jill’s spaceship, carrying a 
clock C',  is traveling at 0.6c, that is 1.8 x 108 meters per second, parallel to the line C1C2, 
passing close by each clock. 
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Clock  C' 

18×108 meters 

Jill in her relativistic rocket passes Jack’s first clock at an instant when both their clocks read zero. 

1.8×108 meters per sec. 

Jack 

Jill 

Clock  C1 Clock  C2 

 

Suppose C'  is synchronized with C1 as they pass, so both read zero. 

As measured by Jack the spaceship will take just 10 seconds to reach C2, since the 
distance is 6 light seconds, and the ship is traveling at 0.6c. 

What does clock C' (the clock on the ship) read as it passes C2?  

The time dilation factor 

( )2 21 / 4 /v c− = 5 

 so C', Jill’s clock, will read 8 seconds. 

Thus if both Jack and Jill are at C2 as Jill and her clock C'  pass C2 , both will agree that 
the clocks look like:  
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18×108 meters 

As Jill passes Jack’s second clock, both see that his clock reads 10 seconds, hers reads 8 seconds. 

Jack 

Clock  C'  reads 8 secon

10 seconds

ds Jill

Clock  C1 Clock  C2 : reads  

How, then, can Jill  claim that Jack’s clocks C1, C2 are the ones that are running slow? 

To Jill, C1, C2 are running slow, but remember they are not synchronized. To Jill, C1 is 

behind C2 by  ( ) ( )2/ / / 6 0.6 3.6 seconds.Lv c L c v c= × = × =

Therefore, Jill will conclude that since C2 reads 10 seconds as she passes it, at that instant 
C1 must be registering 6.4 seconds.  Jill’s own clock reads 8 seconds at that instant, so 
she concludes that C1 is running slow by the appropriate time dilation factor of 4/5.  This 
is how the change in synchronization makes it possible for both Jack and Jill to see the 
other’s clocks as running slow.  

Of course, Jill’s assertion that as she passes Jack’s second “ground” clock C2 the first 
“ground” clock C1 must be registering 6.4 seconds is not completely trivial to check!  
After all, that clock is now a million miles away! 

Let us imagine, though, that both observers are equipped with Hubble-style telescopes 
attached to fast acting cameras, so reading a clock a million miles away is no trick.  

To settle the argument, the two of them agree that as she passes the second clock, Jack 
will be stationed at the second clock, and at the instant of her passing they will both take 
telephoto digital snapshots of the faraway clock C1, to see what time it reads.  

Jack, of course, knows that C1 is 6 light seconds away, and is synchronized with C2 
which at that instant is reading 10 seconds, so his snapshot must show C1 to read 4 
seconds.  That is, looking at C1 he sees it as it was six seconds ago. 
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What does Jill’s digital snapshot show?  It must be identical—two snapshots taken from 
the same place at the same time must show the same thing!  So, Jill must also gets a 
picture of C1 reading 4 seconds.  

How can she reconcile a picture of the clock reading 4 seconds with her assertion that 
at the instant she took the photograph the clock was registering 6.4 seconds?  

The answer is that she can if she knows her relativity!  

First point: length contraction. To Jill, the clock C1 is actually only 4/5 x 18 x 108 meters 
away (she sees the distance C1C2 to be Lorentz contracted!).  

Second point: The light didn’t even have to go that far!  In her frame, the clock C1 is 
moving away, so the light arriving when she’s at C2 must have left C1 when it was 
closer—at distance x in the figure below. The figure shows the light in her frame moving 
from the clock towards her at speed c, while at the same time the clock itself is moving to 
the left at 0.6c.  

It might be helpful to imagine yourself in her frame of reference, so you are at rest, and to 
think of clocks C1 and C2 as being at the front end and back end respectively of a train 
that is going past you at speed 0.6c.  Then, at the moment the back of the train passes 
you, you take a picture (through your telescope, of course) of the clock at the front of the 
train.  Obviously, the light from the front clock that enters your camera at that instant left 
the front clock some time ago.  During the time that light traveled towards you at speed c, 
the front of the train itself was going in the opposite direction at speed 0.6c. But you 
know the length of the train in your frame is 4/5 x 18 x 108 meters, so since at the instant 
you take the picture the back of the train is passing you, the front of the train must be 4/5 
x 18 x 108 meters away. Now that distance, 4/5 x 18 x 108, is the sum of the distance the 
light entering your camera traveled plus the distance the train traveled in the same time, 
that is, (1 + 0.6)/1 times the distance the light traveled. 
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x 

Velocity of clock C1 =0.6c Light from C1 travels towards Jill at c 

4/5×18×108 meters 

As Jill passes C2, she photographs C1: at that instant, she knows C1 is 
4/5×18×108 meters away in her frame, but the light reaching her camera at 
that moment left C1 when it was at a distance x, not so far away.  As the light 
traveled towards her at speed c, C1 was moving away at a speed of 0.6c, so 
the distance 4/5×18×108 meters is the sum of how far the light traveled 
towards her and how far the clock traveled away from her, both starting at x.   

 

So the image of the first ground clock she sees and records as she passes the second 
ground clock must have been emitted when the first clock was a distance x from her in 
her frame, where 

( ) 8 81 3 / 5 4 / 5 18 10  meters, so 9 10  meters.x x+ = × × = ×  
Having established that the clock image she is seeing as she takes the photograph left the 
clock when it was only 9 x 108 meters away, that is, 3 light seconds, she concludes that 

she is observing the first ground clock as it was three seconds ago.  

Third point: time dilation. The story so far: she has a photograph of the first ground clock 
that shows it to be reading 4 seconds. She knows that the light took three seconds to reach 
her.  So, what can she conclude the clock must actually be registering at the instant the 
photo was taken?  If you are tempted to say 7 seconds, you have forgotten that in her 
frame, the clock is moving at 0.6c and hence runs slow by a factor 4/5.  

Including the time dilation factor correctly, she concludes that in the 3 seconds that the 
light from the clock took to reach her, the clock itself will have ticked away 3 × 4/5 
seconds, or 2.4 seconds.  

Therefore, since the photograph shows the clock to read 4 seconds, and she finds the 
clock must have run a further 2.4 seconds, she deduces that at the instant she took the 
photograph the clock must actually have been registering 6.4 seconds, which is what she 
had claimed all along! 

The key point of this lecture is that at first it seems impossible for two observers moving 
relative to each other to both maintain that the other one’s clocks run slow.  However, by 
bringing in the other necessary consequences of the theory of relativity, the Lorentz 
contraction of lengths, and that clocks synchronized in one frame are out of 
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synchronization in another by a precise amount that follows necessarily from the 
constancy of the speed of light, the whole picture becomes completely consistent! 

More Relativity: The Train and the Twins  

Einstein’s Definition of Common Sense  

As you can see from the lectures so far, although Einstein’s theory of special relativity 
solves the problem posed by the Michelson-Morley experiment—the nonexistence of an 
ether—it is at a price.  The simple assertion that the speed of a flash of light is always c in 
any inertial frame leads to consequences that defy common sense.  When this was 
pointed out somewhat forcefully to Einstein, his response was that common sense is the 
layer of prejudices put down before the age of eighteen.  All our intuition about space, 
time and motion is based on childhood observation of a world in which no objects move 
at speeds comparable to that of light.  Perhaps if we had been raised in a civilization 
zipping around the universe in spaceships moving at relativistic speeds, Einstein’s 
assertions about space and time would just seem to be common sense.  The real question, 
from a scientific point of view, is not whether special relativity defies common sense, but 
whether it can be shown to lead to a contradiction.  If that is so, common sense wins.  
Ever since the theory was published, people have been writing papers claiming it does 
lead to contradictions.  The previous lecture, the worked example on time dilation, shows 
how careful analysis of an apparent contradiction leads to the conclusion that in fact there 
was no contradiction after all.  In this lecture, we shall consider other apparent 
contradictions and think about how to resolve them.  This is the best way to build up an 
understanding of relativity.  

Trapping a Train in a Tunnel  

One of the first paradoxes to be aired was based on the Fitzgerald contraction.  Recall 
that any object moving relative to an observer will be seen by that observer to be 
contracted, foreshortened in the direction of motion by the ubiquitous factor 2 21 /v c− .   
Einstein lived in Switzerland, a very mountainous country where the railroads between 
towns often go through tunnels deep in the mountains.  

Suppose a train of length L is moving along a straight track at a relativistic speed and 
enters a tunnel, also of length L.  There are bandits inhabiting the mountain above the 
tunnel.  They observe a short train, one of length 2 21 /L v c− ,  so they wait until this 
short train is completely inside the tunnel of length L, then they close doors at the two 
ends, and the train is trapped fully inside the mountain.  Now look at this same scenario 
from the point of view of someone on the train.  He sees a train of length L, approaching 
a tunnel of length 2 21 /L v c− ,  so the tunnel is not as long as the train from his 
viewpoint!  What does he think happens when the bandits close both the doors?  
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The Tunnel Doors are Closed Simultaneously  

The key to understanding what is happening here is that we said the bandits closed the 
two doors at the ends of the tunnel at the same time.  How could they arrange to do that, 
since the doors are far apart?  They could use walkie-talkies, which transmit radio waves, 
or just flash a light down the tunnel, since it’s long and straight.  Remember, though, that 
the train is itself going at a speed close to that of light, so they have to be quite precise 
about this timing!  The simplest way to imaging them synchronizing the closings of the 
two doors is to assume they know the train’s timetable, and at a prearranged appropriate 
time, a light is flashed halfway down the tunnel, and the end doors are closed when the 
flash of light reaches the ends of the tunnel.  Assuming the light was positioned correctly 
in the middle of the tunnel, that should ensure that the two doors close simultaneously.  

Or are they?  

Now consider this door-closing operation from the point of view of someone on the train.  
Assume he’s in an observation car and has incredible eyesight, and there’s a little mist, so 
he actually sees the light flash, and the two flashes traveling down the tunnels towards the 
two end doors.  Of course, the train is a perfectly good inertial frame, so he sees these 
two flashes to be traveling in opposite directions, but both at c, relative to the train.  
Meanwhile, he sees the tunnel itself to be moving rapidly relative to the train.  Let us say 
the train enters the mountain through the “front” door.  The observer will see the door at 
the other end of the tunnel, the “back” door, to be rushing towards him, and rushing to 
meet the flash of light.  Meanwhile, once he’s in the tunnel, the front door is receding 
rapidly behind him, so the flash of light making its way to that door has to travel further 
to catch it.  So the two flashes of light going down the tunnel in opposite directions do 
not reach the two doors simultaneously as seen from the train.  

The concept of simultaneity, events happening at the same time, is not invariant as we 
move from one inertial frame to another.  The man on the train sees the back door close 
first, and, if it is not quickly reopened, the front of the train will pile into it before the 
front door is closed behind the train.  

Does the Fitzgerald Contraction Work Sideways?  

The above discussion is based on Einstein’s prediction that objects moving at relativistic 
speed appear shrunken in their direction of motion.  How do we know that they’re not 
shrunken in all three directions, i.e. moving objects maybe keep the same shape, but just 
get smaller?  This can be seen not to be the case through a symmetry argument, also due 
to Einstein.  Suppose two trains traveling at equal and opposite relativistic speeds, one 
north, one south, pass on parallel tracks.  Suppose two passengers of equal height, one on 
each train, are standing leaning slightly out of open windows so that their noses should 
very lightly touch as they pass each other.  Now, if N (the northbound passenger) sees S 
as shrunken in height, N’s nose will brush against S’s forehead, say, and N will feel S’s 
nose brush his chin.  Afterwards, then, N will have a bruised chin (plus nose), S a bruised 
forehead (plus nose).  But this is a perfectly symmetric problem, so S would say N had 
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the bruised forehead, etc.  They can both get off their trains at the next stations and get 
together to check out bruises.  They must certainly be symmetrical! The only consistent 
symmetrical solution is given by asserting that neither sees the other to shrink in height 
(i.e. in the direction perpendicular to their relative motion), so that their noses touch each 
other.  Therefore, the Lorentz contraction only operates in the direction of motion, objects 
get squashed but not shrunken.  

How to Give Twins Very Different Birthdays  

Perhaps the most famous of the paradoxes of special relativity, which was still being 
hotly debated in national journals in the fifties, is the twin paradox.  The scenario is as 
follows. One of two twins - the sister—is an astronaut . (Flouting tradition, we will take 
fraternal rather than identical twins, so that we can use “he” and “she” to make clear 
which twin we mean).  She sets off in a relativistic spaceship to alpha-centauri, four light-
years away, at a speed of, say, 0.6c.  When she gets there, she immediately turns around 
and comes back.  As seen by her brother on earth, her clocks ran slowly by the time 
dilation factor 2 21 /v c− ,  so although the round trip took 8/0.6 years = 160 months by 
earth time, she has only aged by 4/5 of that, or 128 months.  So as she steps down out of 
the spaceship, she is 32 months younger than her twin brother.  

But wait a minute—how does this look from her point of view? She sees the earth to be 
moving at 0.6c, first away from her then towards her. So she must see her brother’s clock 
on earth to be running slow! So doesn’t she expect her brother on earth to be the younger 
one after this trip?  

The key to this paradox is that this situation is not as symmetrical as it looks.  The two 
twins have quite different experiences.  The one on the spaceship is not in an inertial 
frame during the initial acceleration and the turnaround and braking periods.  (To get an 
idea of the speeds involved, to get to 0.6c at the acceleration of a falling stone would take 
over six months.)  Our analysis of how a clock in one inertial frame looks as viewed from 
another doesn’t work during times when one of the frames isn’t inertial - in other words, 
when one is accelerating.  

The Twins Stay in Touch  

To try to see just how the difference in ages might develop, let us imagine that the twins 
stay in touch with each other throughout the trip.  Each twin flashes a powerful light once 
a month, according to their calendars and clocks, so that by counting the flashes, each one 
can monitor how fast the other one is aging.  

The questions we must resolve are:  

If the brother, on earth, flashes a light once a month, how frequently, as measured by her 
clock, does the sister see his light to be flashing as she moves away from earth at speed 
0.6c?  
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How frequently does she see the flashes as she is returning at 0.6c?  

How frequently does the brother on earth see the flashes from the spaceship?  

Once we have answered these questions, it will be a matter of simple bookkeeping to find 
how much each twin has aged.  

Figuring the Observed Time between Flashes  

To figure out how frequently each twin observes the other’s flashes to be, we will use 
some results from the previous lecture, on time dilation.  In some ways, that was a very 
small scale version of the present problem. Recall that we had two “ground” clocks only 
one million miles apart.  As the astronaut, conveniently moving at 0.6c, passed the first 
ground clock, both that clock and her own clock read zero. As she passed the second 
ground clock, her own clock read 8 seconds and the first ground clock, which she 
photographed at that instant, she observed to read 4 seconds.  

That is to say, after 8 seconds had elapsed on her own clock, constant observation of the 
first ground clock would have revealed it to have registered only 4 seconds.  (This effect 
is compounded of time dilation and the fact that as she moves away, the light from the 
clock is taking longer and longer to reach her.)  

Our twin problem is the same thing, at the same speed, but over a longer time - we 
conclude that observation of any earth clock from the receding spacecraft will reveal it to 
be running at half speed, so the brother’s flashes will be seen at the spacecraft to arrive 
every two months, by spacecraft time.  

Symmetrically, as long as the brother on earth observes his sister’s spacecraft to be 
moving away at 0.6c, he will see light from her flashes to be arriving at the earth every 
two months by earth time.  

To figure the frequency of her brother’s flashes observed as she returns towards earth, we 
have to go back to our previous example and find how the astronaut traveling at 0.6c 
observes time to be registered by the second ground clock, the one she’s approaching.  

We know that as she passes that clock, it reads 10 seconds and her own clock reads 8 
seconds. We must figure out what she would have seen that second ground clock to read 
had she glanced at it through a telescope as she passed the first ground clock, at which 
point both her own clock and the first ground clock read zero. But at that instant, the 
reading she would see on the second ground clock must be the same as would be seen by 
an observer on the ground, standing by the first ground clock and observing the second 
ground clock through a telescope. Since the ground observer knows both ground clocks 
are synchronized, and the first ground clock reads zero, and the second is 6 light seconds 
distant, it must read -6 seconds if observed at that instant.  
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Hence the astronaut will observe the second ground clock to progress from -6 seconds to 
+10 seconds during the period that her own clock goes from 0 to 8 seconds.  In other 
words, she sees the clock she is approaching at 0.6c to be running at double speed.  

Finally, back to the twins. During her journey back to earth, the sister will see the 
brother’s light flashing twice a month.  (Evidently, the time dilation effect does not fully 
compensate for the fact that each succeeding flash has less far to go to reach her.)  

We are now ready to do the bookkeeping: first, from the sister’s point of view.  

What does she see?  

At 0.6c, she sees the distance to alpha-centauri to be contracted by the familiar 
2 21 / 0.v c− = 8  to a distance of 3.2 light years, which at 0.6c will take her a time 5.333 

years, or, more conveniently, 64 months.  During the outward trip, then, she will see 32 
flashes from home, she will see her brother to age by 32 months.  

Her return trip will also take 64 months, during which time she will see 128 flashes, so 
over the whole trip she will see 128 + 32 = 160 flashes.  That means she will have seen 
her brother to age by 160 months or 13 years 4 months.  

What does he see?  

As he watches for flashes through his telescope, the stay-at-home brother will see his 
sister to be aging at half his own rate of aging as long as he sees her to be moving away 
from him, then aging at twice his rate as he sees her coming back.  At first glance, this 
sounds the same as what she sees—but it isn’t!  The important question to ask is when 
does he see her turn around?  To him, her outward journey of 4 light years’ distance at a 
speed of 0.6c takes her 4/0.6 years, or 80 months. BUT he doesn’t see her turn around 
until 4 years later, because of the time light takes to get back to earth from alpha-
centauri!  In other words, he will actually see her aging at half his rate for 80 + 48 = 128 
months, during which time he will see 64 flashes.  

When he sees his sister turn around, she is already more than half way back!  Remember, 
in his frame the whole trip takes 160 months (8 light years at 0.6c) so he will only see her 
aging at twice his rate during the last 160 - 128 = 32 months, during which period he will 
see all 64 flashes she sent out on her return trip.  

Therefore, by counting the flashes of light she transmitted once a month, he will conclude 
she has aged 128 months on the trip, which by his clock and calendar took 160 months.  
So when she steps off the spacecraft 32 months younger than her twin brother, neither of 
them will be surprised!  
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The Doppler Effect  

The above analysis hinges on the fact that a traveler approaching a flashing light at 0.6c 
will see it flashing at double its “natural” rate - the rate observed by someone standing 
still with the light - and a traveler receding at 0.6c from a flashing light will see it to flash 
at only half its natural rate.  

This is a particular example of the Doppler Effect, first discussed in 1842 by the German 
physicist Christian Doppler.  There is a Doppler Effect for sound waves too. Sound is 
generated by a vibrating object sending a succession of pressure pulses through the air. 
These pressure waves are analogous to the flashes of light.  If you are approaching a 
sound source you will encounter the pressure waves more frequently than if you stand 
still. This means you will hear a higher frequency sound.  If the distance between you and 
the source of sound is increasing, you will hear a lower frequency.  This is why the note 
of a jet plane or a siren goes lower as it passes you.  The details of the Doppler Effect for 
sound are a little different than those for light, because the speed of sound is not the same 
for all observers - it’s 330 meters per second relative to the air.  

It isn’t difficult to find the general formula for the Doppler shift, that is, the change in 
frequency observed when the source of waves (or periodic signals in general) is moving.  
For example, consider a light flashing once a second as observed by someone in the same 
frame as the light.  Let us imagine the light to be attached to a spaceship, passing us at a 
relativistic speed v, and imagine we see a flash at the instant it passes us.  When will we 
see the next flash? First, the spaceship’s clock is running slow according to us, so it will 
take 2 21/ 1 /v c−  seconds before it emits the next flash.  But it’s also moving away 
from us, so we won’t see that next flash until the light has traveled back to us over the 
distance covered by the spaceship between flashes.  Since the spaceship is traveling at v, 
and the time between flashes as measured in our frame is 2 21/ 1 / ,v c−  the distance the 

spaceship covers between flashes measures in our frame is 2 2/ 1 / .v v c−   Since the light 
coming back to us from the flash is traveling at c, it covers this distance in time 

2 2/ 1 /v c v c− .  

Thus the total time between our observing the first flash as the spaceship passes close by 
us and the second flash emitted one second later by the spaceship clock is:  

2 2 2 2

1 1
1 /1 / 1 /

v v
v cv c c v c

+
+ =

−− −

/ c  

The change in frequency is the inverse of the change in time between flashes.  Also, 
notice that the shift for a spaceship approaching at speed v is the inverse of that for one 
receding at speed v.  We already established that above for the special case of v = 0.6c, 
where we found the frequency halved for the spaceship receding, doubled for it 
approaching. 
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There are some significant differences between the Doppler effect for light and that for 
sound.  The most obvious one is that if something is approaching you at a speed higher 
than the speed of sound, you won’t hear a thing until it hits!  As we shall see, nothing can 
approach you at greater than the speed of light.  Another difference is that the Doppler 
shift for light depends only on the velocity of the emitter relative to that of the receiver.  
For sound, the shift depends on the velocities of both of them relative to the air.  Finally, 
consider a signal from a moving object moving along a straight line, but not towards you. 
For example, consider a train moving along a straight track, and the nearest point on the 
track is one mile from where you’re standing.  What frequency do you hear (or see) for 
the signal emitted when the train was at the nearest point to you on the track?  For a 
sound signal, you would hear no Doppler shifting at this point. For a light signal, 
however, you would see a frequency shift downwards equal to the time dilation factor. 
This is called the transverse Doppler shift, and is famous historically because it was first 
detected in 1938 by two experimenters, Ives and Stillwell, who even then didn’t believe 
in special relativity!  They interpreted their result as the slowing down of a clock as it 
moved through the aether.  

An important astronomical application of the Doppler Effect is the red shift.  The light 
from very distant galaxies is redder than the light from similar galaxies nearer to us.  This 
is because the further away a galaxy is, the faster it is moving away from us, as the 
Universe expands.  The light is redder because red light is low frequency light (blue is 
high) and we see low frequency light for the same reason that the astronaut receding from 
earth sees flashes less frequently.  In fact, the farthest away galaxies we can see are 
receding faster than the 0.6c of our astronaut! 

Adding Velocities: A Walk on the Train  

The Formula 

If I walk from the back to the front of a train at 3 m.p.h., and the train is traveling at 60 
m.p.h., then common sense tells me that my speed relative to the ground is 63 m.p.h. As 
we have seen, this obvious truth, the simple addition of velocities, follows from the 
Galilean transformations.  Unfortunately, it can’t be quite right for high speeds!  We 
know that for a flash of light going from the back of the train to the front, the speed of the 
light relative to the ground is exactly the same as its speed relative to the train, not 60 
m.p.h. different.  Hence it is necessary to do a careful analysis of a fairly speedy person 
moving from the back of the train to the front as viewed from the ground, to see how 
velocities really add.  

We consider our standard train of length L moving down the track at steady speed 
v, and equipped with synchronized clocks at the back and the front.  The walker sets 
off from the back of the train when that clock reads zero.  Assuming a steady 
walking speed of u meters per second (relative to the train, of course), the walker 
will see the front clock to read L/u seconds on arrival there.  
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How does this look from the ground?  Let’s assume that at the instant the walker began to 
walk from the clock at the back of the train, the back of the train was passing the ground 
observer’s clock, and both these clocks (one on the train and one on the ground) read 
zero.  The ground observer sees the walker reach the clock at the front of the train at the 
instant that clock reads L/u (this is in agreement with what is observed on the train—two 
simultaneous events at the same place are simultaneous to all observers), but at this same 
instant, the ground observer says the train’s back clock, where the walker began, reads 
L/u + Lv/c2.  (This follows from our previously established result that two clocks 
synchronized in one frame, in which they are L apart, will be out of synchronization in a 
frame in which they are moving at v along the line joining them by a time Lv/c2.)  

Now, how much time elapses as measured by the ground observer’s clock during the 
walk? At the instant the walk began, the ground observer saw the clock at the back of the 
train (which was right next to him) to read zero.  At the instant the walk ended, the 
ground observer would say that clock read L/u + Lv/c2, from the paragraph above.  But 
the ground observer would see that clock to be running slow, by the usual time dilation 
factor: so he would measure the time of the walk on his own clock to be:  

( )
2

2 2
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+

−
 

How far does the walker move as viewed from the ground?  In the time tW, the train 
travels a distance vtW, so the walker moves this distance plus the length of the train.  
Remember that the train is contracted as viewed from the ground!  It follows that the 
distance covered relative to the ground during the walk is:  
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The walker’s speed relative to the ground is simply dW/tW, easily found from the above 
expressions:  
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This is the appropriate formula for adding velocities. Note that it gives the correct 
answer, u + v, in the low velocity limit, and also if u or v equals c, the sum of the 
velocities is c.  

Exercise 1:  The direct derivation given above is really equivalent to a rederivation of the 
Lorentz equations. The equation describing the walker's path on the train is just x' = ut'. 
Substitute this in the Lorentz equations and prove it leads to a path relative to the ground 
given by x = wt, with w given by the velocity addition formula. 

Exercise 2:  Suppose a spaceship is equipped with a series of one-shot rockets, each of 
which can accelerate the ship to c/2 from rest.  It uses one rocket to leave the solar system 
(ignore gravity here) and is then traveling at c/2 (relative to us) in deep space.  It now 
fires its second rocket, keeping the same direction.  Find how fast it is moving relative to 
us.  It now fires the third rocket, keeping the same direction.  Find its new speed.  Can 
you draw any general conclusions from your results? 

Walking Across the Train  

Imagine now a rather wide train, of width w, and the walker begins the walk across the 
train, which is now equipped with clocks on both sides, when the clock where he begins 
reads t = 0.  For walking speed uy' (relative to the train, and across the train is the y-
direction) when he reaches the clock at the other side it will read w/uy'.  How is this seen 
from the ground?  The width of the train w will be the same, there is no Lorentz 
contraction in the y-direction for motion in the x-direction.  The beginning and ending 
clocks will also be synchronized as seen from the ground, since they are separated in the 
y-direction but not the x-direction.  However, they are clocks moving at relativistic speed, 
so they will exhibit the familiar time dilation factor.  That is, when they read w/uy', a 
clock on the ground will read 

2 2

1 .
1 /y

w
u v c′ −

 

Thus, as observed from the ground, walking directly across the train is slowed down by 
the time dilation factor, just as is every other activity on the train as seen from the 
ground. 

However, for steady motion on the train in an arbitrary direction, velocity components 
(ux', uy') the cross-train velocity transforms in a more complicated way, because the train 
clocks at the beginning and end of the walk are now separated in the x-direction, so if 
they register an elapsed time of w/uy a ground observer would add a lack of synchronicity 
term  
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Thus the time for the walk as observed from the ground 
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From this we find the general formula for transformation of transverse velocities: 
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For the special case of walking directly across the train, ux' = 0, we recover the earlier 
result, that transverse velocity is simply slowed by the time dilation effect.  

Testing the Addition of Velocities Formula  

Actually, the first test of the addition of velocities formula was carried out in the 1850s!  
Two French physicists, Fizeau and Foucault, measured the speed of light in water, and 
found it to be c/n, where n is the refractive index of water, about 1.33. (This was the 
result predicted by the wave theory of light.)  

They then measured the speed of light (relative to the ground) in moving water, by 
sending light down a long pipe with water flowing through it at speed v.  They discovered 
that the speed relative to the ground was not just v + c/n, but had an extra term, v + c/n - 
v/n2.  Their (incorrect) explanation was that the light was a complicated combination of 
waves in the water and waves in the aether, and the moving water was only partially 
dragging the aether along with it, so the light didn’t get the full speed v of the water 
added to its original speed c/n.  

The true explanation of the extra term is much simpler: velocities don’t simply add.  To 
add the velocity v to the velocity c/n, we must use the addition of velocities formula 
above, which gives the light velocity relative to the ground to be:  

(v + c/n)/(1 + v/nc) 

Now, v is much smaller than c or c/n, so 1/(1 + v/nc) can be written as (1 - v/nc), giving:  

(v + c/n)(1 - v/nc) 

Multiplying this out gives v + c/n - v/n2 -v/n×v/c, and the last term is smaller than v by a 
factor v/c, so is clearly negligible.  

Therefore, the 1850 experiment looking for “aether drag” in fact confirms the relativistic 
addition of velocities formula!  Of course, there are many other confirmations.  For 
example, any velocity added to c still gives c.  Also, it indicates that the speed of light is a 
speed limit for all objects, a topic we shall examine more carefully in the next lecture. 
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Relativistic Dynamics  

The Story So Far: A Brief Review  

The first coherent statement of what physicists now call relativity was Galileo’s 
observation almost four hundred years ago that if you were in a large closed room, you 
could not tell by observing how things move-living things, thrown things, dripping 
liquids-whether the room was at rest in a building, say, or below decks in a large ship 
moving with a steady velocity.  More technically (but really saying the same thing!) we 
would put it that the laws of motion are the same in any inertial frame.  That is, these 
laws really only describe relative positions and velocities.  In particular, they do not 
single out a special inertial frame as the one that’s “really at rest”.  This was later all 
written down more formally, in terms of Galilean transformations.  Using these simple 
linear equations, motion analyzed in terms of positions and velocities in one inertial 
frame could be translated into any other.  When, after Galileo, Newton wrote down his 
Three Laws of Motion, they were of course invariant under the Galilean transformations, 
and valid in any inertial frame. 

About two hundred years ago, it became clear that light was not just a stream of particles 
(as Newton had thought) but manifested definite wavelike properties.  This led naturally 
to the question of what, exactly, was waving, and the consensus was that space was filled 
with an aether, and light waves were ripples in this all-pervading aether analogous to 
sound waves in air.  Maxwell’s discovery that the equations describing electromagnetic 
phenomena had wavelike solutions, and predicted a speed which coincided with the 
measured speed of light, suggested that electric and magnetic fields were stresses or 
strains in the aether, and Maxwell’s equations were presumably only precisely correct in 
the frame in which the aether was at rest.  However, very precise experiments which 
should have been able to detect this aether all failed. 

About a hundred years ago, Einstein suggested that maybe all the laws of physics were 
the same in all inertial frames, generalizing Galileo’s pronouncements concerning motion 
to include the more recently discovered laws of electricity and magnetism.  This would 
imply there could be no special “really at rest” frame, even for light propagation, and 
hence no aether.  This is a very appealing and very simple concept: the same laws apply 
in all frames.  What could be more reasonable?  As we have seen, though, it turns out to 
clash with some beliefs about space and time deeply held by everybody encountering this 
for the first time.  The central prediction is that since the speed of light follows from the 
laws of physics (Maxwell’s equations) and some simple electrostatic and magnetostatic 
experiments, which are clearly frame-independent, the speed of light is the same in all 
inertial frames.  That is to say, the speed of a particular flash of light will always be 
measured to be 3 108 meters per second even if measured by different observers moving 
rapidly relative to each other, where each observer measures the speed of the flash 
relative to himself.  Nevertheless, experiments have show again and again that Einstein’s 
elegant insight is right, and everybody’s deeply held beliefs are wrong.  
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We have discussed in detail the kinematical consequences of Einstein’s postulate:  how 
measurements of position, time and velocity in one frame relate to those in another, and 
how apparent paradoxes can be resolved by careful analysis.  So far, though, we have not 
thought much about dynamics.  We know that Newton’s Laws of Motion were invariant 
under the Galilean transformations between inertial frames.  We now know that the 
Galilean transformations are in fact incorrect except in the low speed nonrelativistic 
limit.  Therefore, we had better look carefully at Newton’s Laws of Motion in light of our 
new knowledge.  

Newton’s Laws Revisited  

Newton’s First Law, the Principle of Inertia, that an object subject to no external forces 
will continue to move in a straight line at steady speed, is equally valid in special 
relativity.  Indeed, it is the defining property of an inertial frame that this is true, and the 
content of special relativity is transformations between such frames.  

Newton’s Second Law, stated in the form force = mass x acceleration, cannot be true as it 
stands in special relativity.  This is evident from the formula we derived for addition of 
velocities.  Think of a rocket having many stages, each sufficient to boost the remainder 
of the rocket (including the unused stages) to c/2 from rest.  We could fire them one after 
the other in a carefully timed way to generate a continuous large force on the rocket, 
which would get it to c/2 in the first firing.  If the acceleration continued, the rocket 
would very soon be exceeding the speed of light.  Yet we know from the addition of 
velocities formula that in fact the rocket never reaches c.  Evidently, Newton’s Second 
Law needs updating. 

Newton’s Third Law, action = reaction, also has problems.  Consider some attractive 
force between two rapidly moving bodies.  As their distance apart varies, so does the 
force of attraction.  We might be tempted to say that the force of A on B is the opposite of 
the force of B on A, at each instant of time, but that implies simultaneous measurements 
at two bodies some distance from each other, and if it happens to be true in A’s inertial 
frame, it won’t be in B’s.  

Conservation Laws  

In nonrelativistic Newtonian physics, the Third Law tells us that two interacting bodies 
feel equal but opposite forces from the interaction.  Therefore from the Second Law, the 
rate of change of momentum of one of the bodies is equal and opposite to that of the 
other body, thus the total rate of change of momentum of the system caused by the 
interaction is zero.  Consequently, for any closed dynamical system (no outside forces 
acting) the total momentum never changes.  This is the law of conservation of momentum.  
It does not depend on the details of the forces of interaction between the bodies, only that 
they be equal and opposite.  

The other major dynamical conservation law is the conservation of energy.  This was not 
fully formulated until long after Newton, when it became clear that frictional heat 
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generation, for example, could quantitatively account for the apparent loss of kinetic plus 
potential energy in actual dynamical systems.  

Although these conservation laws were originally formulated within a Newtonian 
worldview, their very general nature suggested to Einstein that they might have a wider 
validity.  Therefore, as a working hypothesis, he assumed them to be satisfied in all 
inertial frames, and explored the consequences.  We follow that approach.  

Momentum Conservation on the Pool Table  

As a warm-up exercise, let us consider conservation of momentum for a collision of two 
balls on a pool table.  We draw a chalk line down the middle of the pool table, and shoot 
the balls close to, but on opposite sides of, the chalk line from either end, at the same 
speed, so they will hit in the middle with a glancing blow, which will turn their velocities 
through a small angle.  In other words, if initially we say their (equal magnitude, opposite 
direction) velocities were parallel to the x-direction—the chalk line—then after the 
collision they will also have equal and opposite small velocities in the y-direction.  (The 
x-direction velocities will have decreased very slightly).  

Balls on pool table moving towards glancing collision 

Motion of balls on table after collision 
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A Symmetrical Spaceship Collision  

Now let us repeat the exercise on a grand scale.  Suppose somewhere in space, far from 
any gravitational fields, we set out a string one million miles long.  (It could be between 
our two clocks in the time dilation experiment).  This string corresponds to the chalk line 
on the pool table.  Suppose now we have two identical spaceships approaching each other 
with equal and opposite velocities parallel to the string from the two ends of the string, 
aimed so that they suffer a slight glancing collision when they meet in the middle.  It is 
evident from the symmetry of the situation that momentum is conserved in both 
directions.  In particular, the rate at which one spaceship moves away from the string 
after the collision - its y-velocity - is equal and opposite to the rate at which the other one 
moves away from the string.  

But now consider this collision as observed by someone in one of the spaceships, call it 
A.  (Remember, momentum must be conserved in all inertial frames—they are all 
equivalent—there is nothing special about the frame in which the string is at rest.)  
Before the collision, he sees the string moving very fast by the window, say a few meters 
away.  After the collision, he sees the string to be moving away, at, say, 15 meters per 
second.  This is because spaceship A has picked up a velocity perpendicular to the string 
of 15 meters per second.  Meanwhile, since this is a completely symmetrical situation, an 
observer on spaceship B would certainly deduce that her spaceship was moving away 
from the string at 15 meters per second as well.  

Just how symmetrical is it?  

The crucial question is: how fast does an observer in spaceship A see spaceship B to be 
moving away from the string?  Let us suppose that relative to spaceship A, spaceship B is 
moving away (in the x-direction) at 0.6c.  First, recall that distances perpendicular to the 
direction of motion are not Lorentz contracted.  Therefore, when the observer in 
spaceship B says she has moved 15 meters further away from the string in a one second 
interval, the observer watching this movement from spaceship A will agree on the 15 
meters - but disagree on the one second!  He will say her clocks run slow, so as measured 
by his clocks 1.25 seconds will have elapsed as she moves 15 meters in the y-direction.  

It follows that, as a result of time dilation, this collision as viewed from spaceship A does 
not cause equal and opposite velocities for the two spaceships in the y-direction.  Initially, 
both spaceships were moving parallel to the x-axis - there was zero momentum in the y-
direction.  Consider y-direction momentum conservation in the inertial frame in which A 
was initially at rest.  An observer in that frame measuring y-velocities after the collision 
will find A to be moving at 15 meters per second, B to be moving at -0.8 x 15 meters per 
second in the y-direction.  So how can we argue there is zero total momentum in the y-
direction after the collision, when the identical spaceships do not have equal and opposite 
velocities?  
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Einstein rescues Momentum Conservation  

Einstein was so sure that momentum conservation must always hold that he rescued it 
with a bold hypothesis: the mass of an object must depend on its speed!  In fact, the mass 
must increase with speed in just such a way as to cancel out the lower y-direction velocity 
resulting from time dilation.  That is to say, if an object at rest has a mass m0, moving at a 
speed v it must have mass 

0
2 21 /

mm
v c

=
−

 

to conserve y-direction momentum. 

Note that this is an undetectably small effect at ordinary speeds, but as an object 
approaches the speed of light, the mass increases without limit!  

Of course, we have taken a very special case here: a particular kind of collision.  The 
reader might well wonder if the same mass correction would work in other types of 
collision, for example a straight line collision in which a heavy object rear-ends a lighter 
object.  The algebra is straightforward, if tedious, and it is found that this mass correction 
factor does indeed ensure momentum conservation for any collision in all inertial frames.  

Mass Really Does Increase with Speed  

Deciding that masses of objects must depend on speed like this seems a heavy price to 
pay to rescue conservation of momentum!  However, it is a prediction that is not difficult 
to check by experiment.  The first confirmation came in 1908, measuring the mass of fast 
electrons in a vacuum tube.  In fact, the electrons in an old-fashioned color TV tube are 
about half a percent heavier than electrons at rest, and this must be allowed for in 
calculating the magnetic fields used to guide them to the screen.  

Much more dramatically, in modern particle accelerators very powerful electric fields are 
used to accelerate electrons, protons and other particles.  It is found in practice that these 
particles become heavier and heavier as the speed of light is approached, and hence need 
greater and greater forces for further acceleration.  Consequently, the speed of light is a 
natural absolute speed limit.  Particles are accelerated to speeds where their mass is 
thousands of times greater than their mass measured at rest, usually called the “rest 
mass”.  

Warning: It should be mentioned that some people don’t like the statement that mass 
increases with speed, they feel that the word “mass” should be restricted to the rest mass 
of an object, which we’ve called m0.  This difference of definition has no physical 
content, however—it’s just a matter of taste.  We would write momentum as p = mv, they 
would write our m0 as m, and say the formula for momentum in their notation is 

2 2/ 1 / .p mv v c= −   Either way, a fast electron is that much harder to deflect from a 
straight line. 
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Mass and Energy Conservation: Kinetic Energy and Mass for Very Fast 
Particles 

As everyone has heard, in special relativity mass and energy are not separately 
conserved, in certain situations mass m can be converted to energy E = mc2.  This 
equivalence is closely related to the mass increase with speed, as we shall see.  Suppose a 
constant force F accelerates a particle of rest mass m0 in a straight line.  The work done 
by the force in accelerating the particle as it travels a distance d is Fd, and this work has 
given the particle kinetic energy.  

As a warm up, recall the elementary derivation of the kinetic energy ½mv² of an ordinary 
non-relativistic (i.e. slow moving) object of mass m.  Suppose it starts from rest. Then 
after time t, it has traveled distance d = ½ at2, and v = at.  From Newton’s second law, F 
= ma, the work done by the force Fd = mad = ½ ma2t2 = ½ mv2.   

This won’t work if the mass is varying, because Newton’s Second Law isn’t always F = 
ma, for variable mass it’s 

/ ,F dp dt=  

force = rate of change of momentum, and if the mass changes the momentum changes, 
even at constant velocity. 

An instructive extreme case is the kinetic energy of a particle traveling close to the speed 
of light, as particles do in accelerators.  In this regime, the change of speed with 
increasing momentum is negligible!  Instead,  

( )d mvdp dmF c
dt dt dt

= = ≅  

where as usual c is the speed of light.  This is what happens in a particle accelerator for a 
charged particle in a constant electric field, with F = qE.   

Since the particle is moving at a speed very close to c, in time dt it will move cdt and the 
force will do work Fcdt.  The equation above can be rewritten 

( ) 2Fcdt dm c=  
So the energy dE expended by the accelerating force in the time dt yields an increase in 
mass, and  Provided the speed is close to c, this can of course be integrated 
to an excellent approximation, to relate a finite particle mass change to the energy 
expended in accelerating it. 

( ) 2.dE dm c=
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Kinetic Energy and Mass for Slow Particles  

Recall that to get momentum to be conserved in all inertial frames, we had to assume an 
increase of mass with speed by the factor 2 21/ 1 / .v c−   This necessarily implies that 
even a slow-moving object has a tiny mass increase if it is put in motion.  

How does this mass increase relate to the kinetic energy?  Consider a mass m0, moving at 
speed v, much less than the speed of light. Its kinetic energy E =½m0v², as discussed 
above. Its mass is 2 2

0 / 1 / ,m v− c

1,

 which we can write as m0 +dm, so dm is the tiny mass 
increase we know must occur.  It’s easy to calculate dm.  

For  we can make the approximations  /v c
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Again, the mass increase dm is related to the kinetic energy KE by KE = (dm)c2.   Having 
looked at two simple cases, we’re ready to derive the general result, valid over the whole 
range of possible speeds. 

Kinetic Energy and Mass for Particles of Arbitrary Speed  

We have shown in the two sections above that (in the two limiting cases) when a force 
does work to increase the kinetic energy of a particle it also causes the mass of the 
particle to increase by an amount equal to the increase in energy divided by c2. In fact this 
result is exactly true over the whole range of speed from zero to arbitrarily close to the 
speed of light, as we shall now demonstrate.  For a particle of rest mass m0 accelerating 
along a straight line (from rest) under a constant force F,  
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Therefore, the work done when the particle moves a distance dx is 
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using v = dx/dt.   
 
 
Therefore the total work done from rest—the kinetic energy—is:  
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∫ ∫ −  

(The integral is easily done by making the substitution y = v2/c2.) 

So we see that in the general case the work done on the body, by definition its kinetic 
energy, is just equal to its mass increase multiplied by c2.  

To understand why this isn’t noticed in everyday life, try an example, such as a jet 
airplane weighing 100 tons moving at 2,000mph.  100 tons is 100,000 kilograms, 
2,000mph is about 1,000 meters per second.  That’s a kinetic energy ½ mv² of 
½.1011joules, but the corresponding mass change of the airplane down by the factor c² = 
9.1016, giving an actual mass increase of about half a milligram, not too easy to detect!  

Notation: m and m0  

As stated earlier, we use m0 to denote the “rest mass” of an object, and m to denote its 
relativistic mass, 2 2

0 / 1 / .m m v c= −  
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In this notation, we follow French and Feynman.  Krane and Tipler, in contrast, use m for 
the rest mass.  Using m as we do gives neater formulas for momentum and energy, but is 
not without its dangers.  One must remember that m is not a constant, but a function of 
speed.  Also, one must remember that the relativistic kinetic energy is (m-m0)c2, and not 
equal to ½mv2, even with the relativistic mass!  

Example: take v2/c2 = 0.99, find the kinetic energy, and compare it with ½mv2 (using the 
relativistic mass). 

Mass and Energy  

Rest Energy  

The fact that feeding energy into a body increases its mass suggests that the mass m0 of a 
body at rest, multiplied by c2, can be considered as a quantity of energy.  The truth of this 
is best seen in interactions between elementary particles.  For example, there is a particle 
called a positron which is exactly like an electron except that it has positive charge.  If a 
positron and an electron collide at low speed (so there is very little kinetic energy) they 
both disappear in a flash of electromagnetic radiation.  This can be detected and its 
energy measured.  It turns out to be 2m0c2 where m0 is the mass of the electron (and the 
positron).  

Thus particles can “vaporize” into pure energy, that is, electromagnetic radiation.  The 
energy m0c2 of a particle at rest is called its “rest energy”.  Note, however, that an 
electron can only be vaporized by meeting with a positron, and there are very few 
positrons around normally, for obvious reasons-they just don’t get far.  (Although 
occasionally it has been suggested that some galaxies may be antimatter!)  

Einstein’s Box  

An amusing “experiment” on the equivalence of mass and energy is the following: 
consider a closed box with a flashlight at one end and light-absorbing material at the 
other end.  Imagine the box to be far out in space away from gravitational fields or any 
disturbances.  Suppose the light flashes once, the flash travels down the box and is 
absorbed at the other end.  

Einstein’s Box: far out in space, a flash of light emitted 
by a bulb attached at one end is absorbed at the other 
end. 
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Now it is known from Maxwell’s theory of electromagnetic waves that a flash of light 
carrying energy E also carries momentum p = E/c. Thus, as the flash leaves the bulb and 
goes down the tube, the box recoils, like a gun, to conserve overall momentum.  Suppose 
the whole apparatus has mass M and recoils at velocity v.  Of course, v << c.  

Then from conservation of momentum in the frame in which the box was initially at rest: 

/ ,Mv E c=  

 the recoil momentum of the box equals (minus) the momentum of the flash emitted. 

After a time t = L/c the light hits the far end of the tube, is absorbed, and the whole thing 
comes to rest again.  (We are assuming that the distance moved by the box is tiny 
compared to its length.) 

How far did the box move?  It moved at speed v for time t, so it moved distance 

/ .d vt vL c= =  

From the conservation of momentum equation above, we see that v = E/Mc, so the 
distance d the box moved over is: 

2 .ELd
mc

=  

Now, the important thing is that there are no external forces acting on this system, so the 
center of mass cannot have moved!  

The only way this makes sense is to say that to counterbalance the mass M moving d 
backwards, the light energy must have transferred a small mass m, say, the length L of 
the tube so that 

Md mL=  

 and balance is maintained. From our formula for d above, we can figure out the 
necessary value of m, 

2 2

M M EL Em d
L L Mc c

= = =  

so  

2.E mc=  
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We have therefore established that transfer of energy implies transfer of the equivalent 
mass.  Our only assumptions here are that the center of mass of an isolated system, 
initially at rest, remains at rest if no external forces act, and that electromagnetic radiation 
carries momentum E/c, as predicted by Maxwell’s equations and experimentally 
established.  

But how is this mass transfer physically realized?  Is the front end of the tube really 
heavier after it absorbs the light?  The answer is yes, because it’s a bit hotter, which 
means its atoms are vibrating slightly faster—and faster moving objects have higher 
mass. (And there’s another contribution we’re about to discuss.) 

Mass and Potential Energy  

Suppose now at the far end of the tube we have a hydrogen atom at rest.  As we shall see 
later, this atom is essentially a proton having an electron bound to it by electrostatic 
attraction.  It is known that a flash of light with total energy 13.6eV is just enough to tear 
the electron away, so in the end the proton and electron are at rest far away from each 
other.  The energy of the light was used up dragging the proton and electron apart—that 
is, it went into potential energy.  (It should be mentioned that the electron also loses 
kinetic energy in this process, 13.6 ev is the net energy required to break up the atom.)  
Now, the light is absorbed by this process, so from our argument above the right hand 
end of the tube must become heavier.  That is to say, a proton at rest plus a (distant) 
electron at rest weigh more than a hydrogen atom by E/c2, with E equal to 13.6eV.  Thus, 
Einstein’s box forces us to conclude that increased potential energy in a system also 
entails the appropriate increase in mass. 

It is interesting to consider the hydrogen atom dissociation in reverse—if a slow moving 
electron encounters an isolated proton, they may combine to form a hydrogen atom, 
emitting 13.6eV of electromagnetic radiation energy as they do so.  Clearly, then, the 
hydrogen atom remaining has that much less energy than the initial proton + electron.  
The actual mass difference for hydrogen atoms is about one part in 108.  This is typical of 
the energy radiated away in a violent chemical reaction—in fact, since most atoms are an 
order of magnitude or more heavier than hydrogen, a part in 109 or 1010 is more usual.  
However, things are very different in nuclear physics, where the forces are stronger so the 
binding is tighter.  We shall discuss this later, but briefly mention an example:  a 
hydrogen nucleus can combine with a lithium nucleus to give two helium nuclei, and the 
mass shed is 1/500 of the original.  This reaction has been observed, and all the masses 
involved are measurable.  The actual energy emitted is 17 MeV.  This is the type of 
reaction that occurs in hydrogen bombs.  Notice that the energy released is at least a 
million times more than the most violent chemical reaction.  

As a final example, let’s make a ballpark estimate of the change in mass of a million tons 
of TNT on exploding.  The TNT molecule is about a hundred times heavier than the 
hydrogen atom, and gives off a few eV on burning.  So the change in weight is of order 
10-10 x106 tons, about a hundred grams.  In a hydrogen bomb, this same mass to energy 
conversion would take about fifty kilograms of fuel.  
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Footnote: Einstein’s Box is a Fake  

Although Einstein’s box argument is easy to understand, and gives the correct result, it is 
based on a physical fiction—the rigid box.  If we had a rigid box, or even a rigid stick, all 
our clock synchronization problems would be over—we could start clocks at the two 
ends of the stick simultaneously by nudging the stick from one end, and, since it’s a rigid 
stick, the other end would move instantaneously.  Actually there are no such materials.  
All materials are held together by electromagnetic forces, and pushing one end causes a 
wave of compression to travel down the stick.  The electrical forces between atoms adjust 
at the speed of light, but the overall wave travels far more slowly because each atom in 
the chain must accelerate for a while before it moves sufficiently to affect the next one 
measurably.  So the light pulse will reach the other end of the box before it has begun to 
move!  Nevertheless, the wobbling elastic box does have a net recoil momentum, which it 
does lose when the light hits the far end.  So the basic point is still valid.  French gives a 
legitimate derivation, replacing the box by its two (disconnected) ends, and finding the 
center of mass of this complete system, which of course remains at rest throughout the 
process. 

Energy and Momentum in Lorentz Transformations 

How Does the Total Energy of a Particle Depend on Speed? 

We have a formula for the total energy E = K.E. + rest energy, 
 

2
2 0

2 21 /
m cE mc

v c
= =

−
 

 
so we can see how total energy varies with speed. 
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Relativistic Mass Increase
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The momentum varies with speed as 
 

0
2 21 /

m vp mv
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How Does the Total Energy of a Particle Depend on Momentum? 

It turns out to be useful to have a formula for E in terms of p. 
 
Now 

2 4
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m cE m c
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so 
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hence using p = mv we find 
 

2 4 2 2
0E m c c p= + . 

 
If p is very small, this gives  
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2
2

0
02

pE m c
m

≈ + , 

the usual classical formula. 
 
  
If p is very large, so c2p2  >> m0

2c4, the approximate formula is E = cp. 
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The High Kinetic Energy Limit: Rest Mass Becomes Unimportant! 

Notice that this high energy limit is just the energy-momentum relationship Maxwell 
found to be true for light, for all p.  This could only be true for all  p if m0

2c4 = 0, that is, 
m0 = 0.   
 
Light is in fact composed of “photons”—particles having zero “rest mass”, as we shall 
discuss later.  The “rest mass” of a photon is meaningless, since they’re never at rest—the 
energy of a photon 
 

2
2 0

2 21 /
m cE mc

v c
= =

−
 

 
is of the form 0/0, since m0 = 0 and v = c, so “m” can still be nonzero. That is to say, the 
mass of a photon is really all K.E. mass.  
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For very fast electrons, such as those produced in high energy accelerators, the additional 
K.E. mass can be thousands of times the rest mass.  For these particles, we can neglect 
the rest mass and take E = cp. 
 

Transforming Energy and Momentum to a New Frame  

We have shown 
0
2 2

2 2 4 2
0

1 /

.

m vp mv
v c

2E mc m c c p

= =
−

= = +

 

 
Notice we can write this last equation in the form 
 

2 2 2 2
0

4E c p m c− = . 
 

That is to say, depends only on the rest mass of the particle and the speed of 
light.  It does not depend on the velocity of the particle, so it must be the same—for a 
particular particle—in all inertial frames.   

E c p2 2− 2

 
This is reminiscent of the invariance of x c t2 2 2− , the interval squared between two 
events, under the Lorentz transformations.  One might guess from this that the laws 
governing the transformation from E, p in one Lorentz frame to E′, p′ in another are 
similar to those for x,t.  We can actually derive the laws for E, p to check this out.   
 
As usual, we consider all velocities to be parallel to the x-axis. 

O 

 
 
We take the frame S'  to be moving in the x-direction at speed v relative to S.   
 

Frame S' S' O' moves at v relative to Frame S 

S 

P Velocity u in Frame S 

v 

Velocity u' in Frame S' 
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Consider a particle of mass m0 (rest mass) moving at u′ in the x′ direction in frame S', and 
hence at u along x in S, where 
 

21 /
u vu
vu c
′ +

=
′+

. 

 
The energy and momentum in S' are 
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and in S: 
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Thus  
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giving 
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from which it is easy to show that 
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Similarly, we can show that 
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These are the Lorentz transformations for energy and momentum of a particle—it is easy 
to check that 
 

2 2 2 2 2 2 2
0

4E c p E c p m c′ ′− = − = . 
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Photon Energies in Different Frames 

For a zero rest mass particle, such as a photon,  E = cp,  E2 – c2p2 = 0 in all frames. 
 
Thus 

2 2 2 2

/ 1
1 /1 / 1 /

/E vp E vE c v cE E
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Since E = cp, E′ = cp′ we also have 
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1 /

v cp p
v c

+′=
−
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Notice that the ratios of photon energies in the two frames coincides with the ratio of 
photon frequencies found in the Doppler shift.  As we shall see when we cover quantum 
mechanics, the photon energy is proportional to the frequency, so these two must of 
course transform in identical fashion.  But it’s interesting to see it come about this way.  
Needless to say, relativity gives us no clue on what the constant of proportionality 
(Planck’s constant) is: it must be measured experimentally.  But the same constant plays 
a role in all quantum phenomena, not just those concerned with photons. 

Transforming Energy into Mass: Particle Creation 

Pion Production 

We have mentioned how, using a synchrocyclotron, it is possible to accelerate protons to 
relativistic speeds.  The rest energy of a proton mpc2 is 938 MeV, using here the standard 
high energy physics energy unit: 1 MeV = 106 eV.  The neutron is a bit heavier—mnc2 = 
940 MeV.  (The electron is 0.51 MeV).  Thus to accelerate a proton to relativistic speeds 
implies giving it a K.E. of order 1,000 MeV, or 1 GeV.   
 
The standard operating procedure of high energy physicists is to accelerate particles to 
relativistic speeds, then smash them into other particles to see what happens.  For 
example, fast protons will be aimed at protons at rest (hydrogen atoms, in other words—
the electron can be neglected).  These proton-proton collisions take place inside some 
kind of detection apparatus, so the results can be observed.  One widely-used detector is 
the bubble chamber: a transparent container filled with a superheated liquid.  The electric 
field of a rapidly moving charged particle passing close to a molecule can dislodge an 
electron, so an energetic particle moving through the liquid leaves a trail of ionized 
molecules. These give centers about which bubbles can nucleate.  The bubbles grow 
rapidly and provide a visible record of the particle’s path.   
 
What is actually observed in p-p scattering at relativistic energies is that often more 
particles come out than went in—particles called pions, π+, π0, π- can be created.  The π0 
is electrically neutral, the π+ has exactly the same amount of charge as the proton.  It is 
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found experimentally that total electric charge is always conserved in collisions, no 
matter how many new particles are spawned, and total baryon number (protons + 
neutrons) is conserved.   
 
Possible scenarios include: 
 

0p p p p π+ → + +  
 

and 
.p p p n π ++ → + +  

 
The neutral pion mass is 135 MeV, the charged pions have mass 140 MeV, where we 
follow standard high energy practice in calling mc2 the “mass”, since this is the energy 
equivalent, and hence the energy which, on creation of the particle in a collision, is taken 
from kinetic energy and stored in mass.  
 
However, an incoming proton with 135 MeV of kinetic energy will not be able to create a 
neutral pion in a collision with a stationary proton.  This is because the incoming proton 
also has momentum, and the collision conserves momentum, so some of the particles 
after the collision must have momentum and hence kinetic energy.  The simplest way to 
figure out just how much energy the incoming proton needs to create a neutral pion is to 
go to the center of mass frame, where initially two protons are moving towards each other 
with equal and opposite velocities, there is no total momentum.  Obviously, in this frame 
the least possible K.E. must be just enough to create the π0 with all the final state 
particles (p,p,π0) at rest. Thus if the relativistic mass of the incoming protons in the center 
of mass frame is m, the total energy 
  

2 22 2 pE mc m c m cπ= = + 2. 

Putting in the proton and pion masses from above, and using 2 2/ 1 ( / )pm m v c= − , we 
find the two incoming protons must both be traveling at 0.36c.   
 
Recall that this is the speed in the center of mass frame, and for practical purposes, like 
designing the accelerator, we need to know the energy necessary in the “lab” frame—that 
in which one of the protons is initially at rest.  The two frames obviously have a relative 
speed of 0.36c, so to get the speed of the incoming proton in the lab frame we must add a 
velocity of 0.36c to one of 0.36c using the relativistic addition of velocities formula, 
which gives 0.64c.  This implies the incoming proton has a relativistic mass of 1.3 times 
its rest mass, and thus a K.E. around 280 MeV.   
 
Thus to create a pion of rest energy 135 MeV, it is necessary to give the incoming proton 
at least 290 MeV of kinetic energy.  This is called the “threshold energy” for pion 
production.  The “inefficiency” arises because momentum is also conserved, so there is 
still considerable K.E. in the final particles.  
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Antiproton Production 

On raising the energy of the incoming proton further, more particles are produced, 
including the “antiproton”—a negatively charged heavy particle which will annihilate a 
proton in a flash of energy.  It turns out experimentally that an antiproton can only be 
produced accompanied by a newly created proton, 
 

p p p p p p+ → + + +  
 

Notice we could have conserved electric charge with less energy with the reaction 
 

p p p p π + p+ → + + +  
 

but this doesn’t happen—so charge conservation isn’t the only constraint on which 
particles can be produced.  In fact, what we are seeing here is experimental confirmation 
that the conservation of baryon number, which at the low energies previously discussed 
in the context of pion production just meant that the total number of protons plus 
neutrons stayed fixed, is generalized at high energies to include antiparticles with 
negative baryon number, -1 for the antiproton. Thus baryon number conservation 
becomes parallel to electric charge conservation, new particles can always be produced at 
high enough energies provided the total new charge and the total new baryon number are 
both zero. (Actually there are further conservation laws which become important when 
more exotic particles are produced, which we may discuss later.)  We should emphasize 
again that these are experimental results gathered from examining millions of collisions 
between relativistic particles.   
 
One of the first modern accelerators, built at Berkeley in the fifties, was designed 
specifically to produce the antiproton, so it was very important to calculate the antiproton 
production threshold correctly!  This can be done by the same method we used above for 
pion production, but we use a different trick here which is often useful.  We have shown 
that on transforming the energy and momentum of a particle from one frame to another 
 

2 2 2 2 2E c p E c p 2′ ′− = −  
 

Since the Lorentz equations are linear, if we have a system of particles with total energy 
E and total momentum p in one frame, E' , p' in another, it must again be true that  
 

2 2 2 2 2 2.E c p E c p′ ′− = −  
 
We can use this invariance to get lab frame information from the center of mass frame.  
Noting that in the center of mass (CM) frame the momentum is zero, and in the lab frame 
the momentum is all in the incoming proton, 
  

2 2 2
0(( ) )cm in in

2 2E m m c c p= + −   
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where here m0 is the proton rest mass, min is the relativistic mass of the incoming proton.  
At the antiproton production threshold, Ecm = 4m0c2, so 
 

2 4 2 4 2 2 2 4 2 2
0 0 016 2in in inm c m c m c m c m c c p= + + −  

 
and using  

2 4 2 2 2 4
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we find 

2 2 2 2 2
0 0 02( )( ) 2( ) 16( )inm c m c m c m c+ = , 2

 
so  

2 2
07inm c m c= . 

 
Therefore to create two extra particles, with total rest energy 2m0c2, it is necessary for the 
incoming proton to have a kinetic energy of 6m0c2.  The Berkeley Gevatron had design 
energy 6.2 GeV.    
 
As we go to higher energies, this “inefficiency” gets worse—consider energies such that 
the kinetic energy >> rest energy, and assume the incoming particle and the target 
particle have the same rest mass, m0, with the incoming particle having relativistic mass 
m. 
  

 

CM 

LAB pLAB = mv 

pCM = 0 v = 0.9c v = -0.9c 

v = 0.994c 

The same collision as viewed in the CM and LAB frames. 

Comparing the center of mass energy with the lab energy at these high energies, 
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For m >> m0,  

2 2 2 2
0 02 2CM LAB.E m c mc m c E≈ ≈  

 
so 

2
02 .CM LABE m c E≈ , 

 
ultimately one must quadruple the lab energy to double the center of mass energy. 

 

How Relativity Connects Electric and Magnetic Fields 

A Magnetic Puzzle… 

Suppose we have an infinitely long straight wire, having a charge density of electrons of 
–λ coulombs per meter, all moving at speed v to the right (recall typical speeds are 
centimeters per minute) and a neutralizing fixed background of positive charge, also of 
course λ coulombs per meter.  The current in the wire has magnitude I = λv (and actually 
is flowing to the left, since the moving electrons carry negative charge).   
 
Suppose also that a positive charge q is outside the wire, a distance r from the axis, and 
this outside charge is moving at the same exact velocity as the electrons in the wire. 
 

 

+ + + + + + + +
- - - - - - - -

+
-

+
-

+q v 

v v 

+
-

Positive charges (ions) are fixed: 
Positive charge outside 

negative charges (electrons) drift at speed v. 
wire also moves at v.  

Note: positive and negative charges are of course uniformly distributed 
throughout the wire. They are shown separated here for clarity.  

 
What force does the positive charge q feel? 
 
The wire is electrically neutral, since it contains equal densities of positive and negative 
charges, both uniformly distributed throughout the wire (the illustration above is of 
course schematic).  So q feels no electrical force. 
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However, since q is moving, it will feel a magnetic force, Bmag .F qv= ×   
 
The magnetic field lines are vertical circles centered along the axis of the wire, the field 
being into the page where the charge is (remember the current is to the left) and of 
magnitude 
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 the force on the charge is of magnitude so
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nd is directed away from the wire, so the charge will accelerate away from the wire. 

ow let us examine the same physical system in the frame of reference in which the 

hat force does q feel in this  frame? 

ince q is at rest, it cannot feel a magnetic force: such forces depend linearly on speed! 

et it looks as if it can’t feel an electric force either, because the positive and negative 
 

 

 

=

a
 
N
charge is initially at rest.  In that frame, the electrons are also at rest, but the positive 
background charge is flowing at v: 
 

 
 
W
 
S
 
Y
charges in the wire have equal densities, right?  This leads to the conclusion that q feels
no force at all in this frame, so it won’t accelerate away from the wire, as it did in the 
other frame.   This is of course nonsense—so where did we go wrong?  

+ + + + + + + + + +
- - - - - - - - - -

+q 

The view in the rest frame  of the electrons and the external positive charge  

v v +
-
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… Solved Electrically! 

g the relativistic Fitzgerald-Lorentz contraction, even though 
the velocities involved are millimeters per second!   In the frame in which the wire is at 

s 

e positive charges, which had density λ coulombs per meter 
 their rest frame, are moving at speed v, so relativistic contraction will increase their 

The mistake was in ignorin

rest, the positive and negative charge densities exactly balance, otherwise there will be 
extra electrostatic fields that the electrons will quickly move to neutralize.  However, thi
necessarily means that the densities cannot balance exactly in the frame in which the 
drifting electrons are at rest.  
 
In the electrons’ rest frame, th
in
density to: 
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22 2
.
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v
cv c
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On the other hand, in this electron frame the electrons ar  at rest, so their density is 
actually less than it was in the frame of the wire, it has decreased by λv2/2c2.   

e charge 
ensity λv /c  in the frame of the moving electrons (and the outside charge).  Recall 

 

e

 
The net effect is that the wire, electrically neutral in the lab frame, has a positiv

2 2d
Gauss’s Law relating the total electric field flux through a surface to the enclosed charge,
 

 0. (enclosed charge) / .E dA ε=∫  
 

Exercise: use this to verify that the electric field from an infinite line of charge λ 
coulombs per meter has magnitude λ/2πrε0 at distance r from the line charge. 
 
From the exercise result, the electrostatic force on the charge q is: 
 

2 2 21 1v q v q vF qE q λ λ
02 2

0 02 2 2c r r c r
λ μ= = = =

π ε π ε π
 

 
where in the last step we used 2

0 01/ c μ ε= . 

entical in m gnitude to the purely magnetic force in the 
ther frame!  So observers in the two frames will agree on the rate at which the particle 

f 

 moving charges can be found in 
urcell, Electricity and Magnetism, McGraw Hill, 1985.  We have chosen the simplest 

 
This purely electrical force is id a
o
accelerates away from the wire, but one will call the accelerating force magnetic, the 
other electric.  We are forced to the conclusion that whether a particular force on an 
actual particle is magnetic or electric, or some mixture of both, depends on the frame o
reference—so the distinction is rather artificial. 
 
A much more complete analysis of the fields from
P
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possible example to illustrate the basic point that electric and magnetic fields are fr
dependent concepts. 

Remarks on G

ame-

eneral Relativity 

 Relativity: the Special and the General Theory, he introduces 
general relativity with a parable.  He imagines going into deep space, far away from 

ere 
 

 middle of the lid of this “chest” and an 
unspecified “being” pulls on the rope with a constant force.  The chest and its contents, 

ok to 

ing, 
 

at this misguided soul?  His answer is no - the 
observer in the chest’s point of view is just as valid as an outsider’s.  In other words, 

ically 
eral 

for 
example, inside a freely falling elevator passengers are weightless, conditions are 

field and 
acceleration is only possible because the gravitational mass is exactly equal to the inertial 

derstanding 
how bodies interact with each other.  We visualize the electric field lines coming out 

e 

Einstein’s Parable 

In Einstein’s little book

gravitational fields, where any body moving at steady speed in a straight line will 
continue in that state for a very long time.  He imagines building a space station out th
- in his words, “a spacious chest resembling a room with an observer inside who is
equipped with apparatus.”  Einstein points out that there will be no gravity, the observer 
will tend to float around inside the room.  

But now a rope is attached to a hook in the

including the observer, accelerate “upwards” at a constant rate.  How does all this lo
the man in the room?  He finds himself moving towards what is now the “floor” and 
needs to use his leg muscles to stand.  If he releases anything, it accelerates towards the 
floor, and in fact all bodies accelerate at the same rate.  If he were a normal human be
he would assume the room to be in a gravitational field, and might wonder why the room
itself didn’t fall.  Just then he would discover the hook and rope, and conclude that the 
room was suspended by the rope.  

Einstein asks: should we just smile 

being inside the (from an outside perspective) uniformly accelerating room is phys
equivalent to being in a uniform gravitational field.  This is the basic postulate of gen
relativity.  Special relativity said that all inertial frames were equivalent.  General 
relativity extends this to accelerating frames, and states their equivalence to frames in 
which there is a gravitational field.  This is called the Equivalence Principle. 

The acceleration could also be used to cancel an existing gravitational field—

equivalent to those in the unaccelerated space station in outer space.  

It is important to realize that this equivalence between a gravitational 

mass.  There is no way to cancel out electric fields, for example, by going to an 
accelerated frame, since many different charge to mass ratios are possible.  

As physics has developed, the concept of fields has been very valuable in un

from a charge, and know that something is there in the space around the charge which 
exerts a force on another charge coming into the neighborhood.  We can even comput
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the energy density stored in the electric field, locally proportional to the square of the 
electric field intensity.  It is tempting to think that the gravitational field is quite similar—
after all, it’s another inverse square field.  Evidently, though, this is not the case. If by 
going to an accelerated frame the gravitational field can be made to vanish, at least 
locally, it cannot be that it stores energy in a simply defined local way like the electric 
field.  

We should emphasize that going to an accelerating frame can only cancel a constant 
gravitational field, of course, so there is no accelerating frame in which the whole 

 

, and suppose a laser fixed 
in one wall of the elevator sends a pulse of light horizontally across to the corresponding 

t 
he 

he 

 
s us to 

 1919, by 
observing stars very near to the sun during a solar eclipse.  The deflection for stars 

 the brief discussion above that a light beam in a gravitational 
field follows the same path a Newtonian particle would if it moved at the speed of light.  

 
hing up 

gravitational field of, say, a massive body is zero, since the field necessarily points in
different directions in different regions of the space surrounding the body.  

Some Consequences of the Equivalence Principle 

Consider a freely falling elevator near the surface of the earth

point on the opposite wall of the elevator.  Inside the elevator, where there are no fields 
present, the environment is that of an inertial frame, and the light will certainly be 
observed to proceed directly across the elevator.  Imagine now that the elevator has 
windows, and an outsider at rest relative to the earth observes the light.  As the ligh
crosses the elevator, the elevator is of course accelerating downwards at g, so since t
flash of light will hit the opposite elevator wall at precisely the height relative to the 
elevator at which it began, the outside observer will conclude that the flash of light also 
accelerates downwards at g.  In fact, the light could have been emitted at the instant t
elevator was released from rest, so we must conclude that light falls in an initially 
parabolic path in a constant gravitational field.  Of course, the light is traveling very fast,
so the curvature of the path is small!  Nevertheless, the Equivalence Principle force
the conclusion that the path of a light beam is bent by a gravitational field. 

The curvature of the path of light in a gravitational field was first detected in

observed very close to the sun was 1.7 seconds of arc, which meant measuring image 
positions on a photograph to an accuracy of hundredths of a millimeter, quite an 
achievement at the time. 

One might conclude from

This is true in the limit of small deviations from a straight line in a constant field, but is 
not true even for small deviations for a spatially varying field, such as the field near the 
sun the starlight travels through in the eclipse experiment mentioned above.  We could 
try to construct the path by having the light pass through a series of freely falling 
(fireproof!) elevators, all falling towards the center of the sun, but then the elevators are
accelerating relative to each other (since they are all falling along radii), and matc
the path of the light beam through the series is tricky.  If it is done correctly (as Einstein 
did) it turns out that the angle the light beam is bent through is twice that predicted by a 
naïve Newtonian theory.  
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What happens if we shine the pulse of light vertically down inside a freely falling 
elevator, from a laser in the center of the ceiling to a point in the center of the floor?  Let 
us suppose the flash of light leaves the ceiling at the instant the elevator is released into 

ns the 

The answer has to be no, because inside the elevator, by the Equivalence Principle, 

nothing to change the frequency of the light.  This implies, however, that to an outside 

ial 

 
 

a 
levator floor, it is clear that light shining 

upwards in a gravitational field is red-shifted to lower frequency.  Einstein suggested that 

 

ent 

anet with 

Despite what you might suspect, the fact that time passes at different rates at different 
veryday application of 

general relativity is the Global Positioning System.  A GPS unit finds out where it is by 

 
 

free fall.  If the elevator has height h, it takes time h/c to reach the floor.  This mea
floor is moving downwards at speed gh/c when the light hits.  

Question: Will an observer on the floor of the elevator see the light as Doppler shifted? 

conditions are identical to those in an inertial frame with no fields present.  There is 

observer, stationary in the earth's gravitational field, the frequency of the light will 
change.  This is because he will agree with the elevator observer on what was the init
frequency f of the light as it left the laser in the ceiling (the elevator was at rest relative to 
the earth at that moment) so if the elevator operator maintains the light had the same
frequency f as it hit the elevator floor, which is moving at gh/c relative to the earth at that
instant, the earth observer will say the light has frequency f(1 + v/c) = f(1+gh/c2), using 
the Doppler formula for very low speeds.  

We conclude from this that light shining downwards in a gravitational field is shifted to 
higher frequency.  Putting the laser in the e

this prediction could be checked by looking at characteristic spectral lines of atoms near 
the surfaces of very dense stars, which should be red-shifted compared with the same
atoms observed on earth, and this was confirmed.  This has since been observed much 
more accurately.  An amusing consequence, since the atomic oscillations which emit the 
radiation are after all just accurate clocks, is that time passes at different rates at differ
altitudes.  The US atomic standard clock, kept at 5400 feet in Boulder, gains 5 
microseconds per year over an identical clock almost at sea level in the Royal 
Observatory at Greenwich, England.  Both clocks are accurate to one microsecond per 
year.  This means you would age more slowly if you lived on the surface of a pl
a large gravitational field.  Of course, it might not be very comfortable.  

General Relativity and the Global Positioning System 

altitudes has significant practical consequences.  An important e

detecting signals sent from orbiting satellites at precisely timed intervals. If all the 
satellites emit signals simultaneously, and the GPS unit detects signals from four 
different satellites, there will be three relative time delays between the signals it detects. 
The signals themselves are encoded to give the GPS unit the precise position of the
satellite they came from at the time of transmission.  With this information, the GPS unit 
can use the speed of light to translate the detected time delays into distances, and 
therefore compute its own position on earth by triangulation.  
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But this has to be done very precisely!  Bearing in mind that the speed of light is a
one foot per nanosecond, an error of 100 nanoseconds or so co

bout 
uld, for example, put an 

airplane off the runway in a blind landing.  This means the clocks in the satellites timing 
t 

, 
lation 

ere

when the signals are sent out must certainly be accurate to 100 nanoseconds a day.  Tha
is one part in 1012.  It is easy to check that both the special relativistic time dilation 
correction from the speed of the satellite, and the general relativistic gravitational 
potential correction are much greater than that, so the clocks in the satellites must be 
corrected appropriately.  (The satellites go around the earth once every twelve hours
which puts them at a distance of about four earth radii.  The calculations of time di
from the speed of the satellite, and the clock rate change from the gravitational potential, 
are left as exercises for the student.)  For more details, see the lecture by Neil Ashby h .  

for the gravitational redshift effect.  But—just in case Einstein turned out to be right—the 
he 

 

In fact, Ashby reports that when the first Cesium clock was put in orbit in 1977, those 
involved were sufficiently skeptical of general relativity that the clock was not corrected 

satellite was equipped with a synthesizer that could be switched on if necessary to add t
appropriate relativistic corrections.  After letting the clock run for three weeks with the 
synthesizer turned off, it was found to differ from an identical clock at ground level by 
precisely the amount predicted by special plus general relativity, limited only by the 
accuracy of the clock.  This simple experiment verified the predicted gravitational 
redshift to about one percent accuracy!  The synthesizer was turned on and left on.  
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