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The Story So Far: A Brief Review  

The first coherent statement of what physicists now call relativity was Galileo’s 
observation almost four hundred years ago that if you were in a large closed room, you 
could not tell by observing how things move-living things, thrown things, dripping 
liquids-whether the room was at rest in a building, say, or below decks in a large ship 
moving with a steady velocity.  More technically (but really saying the same thing!) we 
would put it that the laws of motion are the same in any inertial frame.  That is, these 
laws really only describe relative positions and velocities.  In particular, they do not 
single out a special inertial frame as the one that’s “really at rest”.  This was later all 
written down more formally, in terms of Galilean transformations.  Using these simple 
linear equations, motion analyzed in terms of positions and velocities in one inertial 
frame could be translated into any other.  When, after Galileo, Newton wrote down his 
Three Laws of Motion, they were of course invariant under the Galilean transformations, 
and valid in any inertial frame. 

About two hundred years ago, it became clear that light was not just a stream of particles 
(as Newton had thought) but manifested definite wavelike properties.  This led naturally 
to the question of what, exactly, was waving, and the consensus was that space was filled 
with an aether, and light waves were ripples in this all-pervading aether analogous to 
sound waves in air.  Maxwell’s discovery that the equations describing electromagnetic 
phenomena had wavelike solutions, and predicted a speed which coincided with the 
measured speed of light, suggested that electric and magnetic fields were stresses or 
strains in the aether, and Maxwell’s equations were presumably only precisely correct in 
the frame in which the aether was at rest.  However, very precise experiments which 
should have been able to detect this aether all failed. 

About a hundred years ago, Einstein suggested that maybe all the laws of physics were 
the same in all inertial frames, generalizing Galileo’s pronouncements concerning motion 
to include the more recently discovered laws of electricity and magnetism.  This would 
imply there could be no special “really at rest” frame, even for light propagation, and 
hence no aether.  This is a very appealing and very simple concept: the same laws apply 
in all frames.  What could be more reasonable?  As we have seen, though, it turns out to 
clash with some beliefs about space and time deeply held by everybody encountering this 
for the first time.  The central prediction is that since the speed of light follows from the 
laws of physics (Maxwell’s equations) and some simple electrostatic and magnetostatic 
experiments, which are clearly frame-independent, the speed of light is the same in all 
inertial frames.  That is to say, the speed of a particular flash of light will always be 
measured to be 3 108 meters per second even if measured by different observers moving 
rapidly relative to each other, where each observer measures the speed of the flash 
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relative to himself.  Nevertheless, experiments have show again and again that Einstein’s 
elegant insight is right, and everybody’s deeply held beliefs are wrong.  

We have discussed in detail the kinematical consequences of Einstein’s postulate:  how 
measurements of position, time and velocity in one frame relate to those in another, and 
how apparent paradoxes can be resolved by careful analysis.  So far, though, we have not 
thought much about dynamics.  We know that Newton’s Laws of Motion were invariant 
under the Galilean transformations between inertial frames.  We now know that the 
Galilean transformations are in fact incorrect except in the low speed nonrelativistic 
limit.  Therefore, we had better look carefully at Newton’s Laws of Motion in light of our 
new knowledge.  

Newton’s Laws Revisited  

Newton’s First Law, the Principle of Inertia, that an object subject to no external forces 
will continue to move in a straight line at steady speed, is equally valid in special 
relativity.  Indeed, it is the defining property of an inertial frame that this is true, and the 
content of special relativity is transformations between such frames.  

Newton’s Second Law, stated in the form force = mass x acceleration, cannot be true as it 
stands in special relativity.  This is evident from the formula we derived for addition of 
velocities.  Think of a rocket having many stages, each sufficient to boost the remainder 
of the rocket (including the unused stages) to c/2 from rest.  We could fire them one after 
the other in a carefully timed way to generate a continuous large force on the rocket, 
which would get it to c/2 in the first firing.  If the acceleration continued, the rocket 
would very soon be exceeding the speed of light.  Yet we know from the addition of 
velocities formula that in fact the rocket never reaches c.  Evidently, Newton’s Second 
Law needs updating. 

Newton’s Third Law, action = reaction, also has problems.  Consider some attractive 
force between two rapidly moving bodies.  As their distance apart varies, so does the 
force of attraction.  We might be tempted to say that the force of A on B is the opposite of 
the force of B on A, at each instant of time, but that implies simultaneous measurements 
at two bodies some distance from each other, and if it happens to be true in A’s inertial 
frame, it won’t be in B’s.  

Conservation Laws  

In nonrelativistic Newtonian physics, the Third Law tells us that two interacting bodies 
feel equal but opposite forces from the interaction.  Therefore from the Second Law, the 
rate of change of momentum of one of the bodies is equal and opposite to that of the 
other body, thus the total rate of change of momentum of the system caused by the 
interaction is zero.  Consequently, for any closed dynamical system (no outside forces 
acting) the total momentum never changes.  This is the law of conservation of momentum.  
It does not depend on the details of the forces of interaction between the bodies, only that 
they be equal and opposite.  
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The other major dynamical conservation law is the conservation of energy.  This was not 
fully formulated until long after Newton, when it became clear that frictional heat 
generation, for example, could quantitatively account for the apparent loss of kinetic plus 
potential energy in actual dynamical systems.  

Although these conservation laws were originally formulated within a Newtonian 
worldview, their very general nature suggested to Einstein that they might have a wider 
validity.  Therefore, as a working hypothesis, he assumed them to be satisfied in all 
inertial frames, and explored the consequences.  We follow that approach.  

Momentum Conservation on the Pool Table  

As a warm-up exercise, let us consider conservation of momentum for a collision of two 
balls on a pool table.  We draw a chalk line down the middle of the pool table, and shoot 
the balls close to, but on opposite sides of, the chalk line from either end, at the same 
speed, so they will hit in the middle with a glancing blow, which will turn their velocities 
through a small angle.  In other words, if initially we say their (equal magnitude, opposite 
direction) velocities were parallel to the x-direction—the chalk line—then after the 
collision they will also have equal and opposite small velocities in the y-direction.  (The 
x-direction velocities will have decreased very slightly).  

Balls on pool table moving towards glancing collision 

Motion of balls on table after collision 
 



 4

A Symmetrical Spaceship Collision  

Now let us repeat the exercise on a grand scale.  Suppose somewhere in space, far from 
any gravitational fields, we set out a string one million miles long.  (It could be between 
our two clocks in the time dilation experiment).  This string corresponds to the chalk line 
on the pool table.  Suppose now we have two identical spaceships approaching each other 
with equal and opposite velocities parallel to the string from the two ends of the string, 
aimed so that they suffer a slight glancing collision when they meet in the middle.  It is 
evident from the symmetry of the situation that momentum is conserved in both 
directions.  In particular, the rate at which one spaceship moves away from the string 
after the collision - its y-velocity - is equal and opposite to the rate at which the other one 
moves away from the string.  

But now consider this collision as observed by someone in one of the spaceships, call it 
A.  (Remember, momentum must be conserved in all inertial frames—they are all 
equivalent—there is nothing special about the frame in which the string is at rest.)  
Before the collision, he sees the string moving very fast by the window, say a few meters 
away.  After the collision, he sees the string to be moving away, at, say, 15 meters per 
second.  This is because spaceship A has picked up a velocity perpendicular to the string 
of 15 meters per second.  Meanwhile, since this is a completely symmetrical situation, an 
observer on spaceship B would certainly deduce that her spaceship was moving away 
from the string at 15 meters per second as well.  

Just how symmetrical is it?  

The crucial question is: how fast does an observer in spaceship A see spaceship B to be 
moving away from the string?  Let us suppose that relative to spaceship A, spaceship B is 
moving away (in the x-direction) at 0.6c.  First, recall that distances perpendicular to the 
direction of motion are not Lorentz contracted.  Therefore, when the observer in 
spaceship B says she has moved 15 meters further away from the string in a one second 
interval, the observer watching this movement from spaceship A will agree on the 15 
meters - but disagree on the one second!  He will say her clocks run slow, so as measured 
by his clocks 1.25 seconds will have elapsed as she moves 15 meters in the y-direction.  

It follows that, as a result of time dilation, this collision as viewed from spaceship A does 
not cause equal and opposite velocities for the two spaceships in the y-direction.  Initially, 
both spaceships were moving parallel to the x-axis - there was zero momentum in the y-
direction.  Consider y-direction momentum conservation in the inertial frame in which A 
was initially at rest.  An observer in that frame measuring y-velocities after the collision 
will find A to be moving at 15 meters per second, B to be moving at -0.8 x 15 meters per 
second in the y-direction.  So how can we argue there is zero total momentum in the y-
direction after the collision, when the identical spaceships do not have equal and opposite 
velocities?  
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Einstein rescues Momentum Conservation  

Einstein was so sure that momentum conservation must always hold that he rescued it 
with a bold hypothesis: the mass of an object must depend on its speed!  In fact, the mass 
must increase with speed in just such a way as to cancel out the lower y-direction velocity 
resulting from time dilation.  That is to say, if an object at rest has a mass m0, moving at a 
speed v it must have mass 

0
2 21 /

mm
v c

=
−

 

to conserve y-direction momentum. 

Note that this is an undetectably small effect at ordinary speeds, but as an object 
approaches the speed of light, the mass increases without limit!  

Of course, we have taken a very special case here: a particular kind of collision.  The 
reader might well wonder if the same mass correction would work in other types of 
collision, for example a straight line collision in which a heavy object rear-ends a lighter 
object.  The algebra is straightforward, if tedious, and it is found that this mass correction 
factor does indeed ensure momentum conservation for any collision in all inertial frames.  

Mass Really Does Increase with Speed  

Deciding that masses of objects must depend on speed like this seems a heavy price to 
pay to rescue conservation of momentum!  However, it is a prediction that is not difficult 
to check by experiment.  The first confirmation came in 1908, measuring the mass of fast 
electrons in a vacuum tube.  In fact, the electrons in an old-fashioned color TV tube are 
about half a percent heavier than electrons at rest, and this must be allowed for in 
calculating the magnetic fields used to guide them to the screen.  

Much more dramatically, in modern particle accelerators very powerful electric fields are 
used to accelerate electrons, protons and other particles.  It is found in practice that these 
particles become heavier and heavier as the speed of light is approached, and hence need 
greater and greater forces for further acceleration.  Consequently, the speed of light is a 
natural absolute speed limit.  Particles are accelerated to speeds where their mass is 
thousands of times greater than their mass measured at rest, usually called the “rest 
mass”.  

Warning: It should be mentioned that some people don’t like the statement that mass 
increases with speed, they feel that the word “mass” should be restricted to the rest mass 
of an object, which we’ve called m0.  This difference of definition has no physical 
content, however—it’s just a matter of taste.  We would write momentum as p = mv, they 
would write our m0 as m, and say the formula for momentum in their notation is 
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2 2/ 1 / .p mv v c= −   Either way, a fast electron is that much harder to deflect from a 
straight line. 

Mass and Energy Conservation: Kinetic Energy and Mass for Very Fast 
Particles 

As everyone has heard, in special relativity mass and energy are not separately 
conserved, in certain situations mass m can be converted to energy E = mc2.  This 
equivalence is closely related to the mass increase with speed, as we shall see.  Suppose a 
constant force F accelerates a particle of rest mass m0 in a straight line.  The work done 
by the force in accelerating the particle as it travels a distance d is Fd, and this work has 
given the particle kinetic energy.  

As a warm up, recall the elementary derivation of the kinetic energy ½mv² of an ordinary 
non-relativistic (i.e. slow moving) object of mass m.  Suppose it starts from rest. Then 
after time t, it has traveled distance d = ½ at2, and v = at.  From Newton’s second law, F 
= ma, the work done by the force Fd = mad = ½ ma2t2 = ½ mv2.   

This won’t work if the mass is varying, because Newton’s Second Law isn’t always F = 
ma, for variable mass it’s 

/ ,F dp dt=  

force = rate of change of momentum, and if the mass changes the momentum changes, 
even at constant velocity. 

An instructive extreme case is the kinetic energy of a particle traveling close to the speed 
of light, as particles do in accelerators.  In this regime, the change of speed with 
increasing momentum is negligible!  Instead,  

( )d mvdp dmF c
dt dt dt

= = ≅  

where as usual c is the speed of light.  This is what happens in a particle accelerator for a 
charged particle in a constant electric field, with F = qE.   

Since the particle is moving at a speed very close to c, in time dt it will move cdt and the 
force will do work Fcdt.  The equation above can be rewritten 

( ) 2Fcdt dm c=  

So the energy dE expended by the accelerating force in the time dt yields an increase in 
mass, and  Provided the speed is close to c, this can of course be integrated ( ) 2.dE dm c=
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to an excellent approximation, to relate a finite particle mass change to the energy 
expended in accelerating it. 

Kinetic Energy and Mass for Slow Particles  

Recall that to get momentum to be conserved in all inertial frames, we had to assume an 
increase of mass with speed by the factor 2 21/ 1 / .v c−   This necessarily implies that 
even a slow-moving object has a tiny mass increase if it is put in motion.  

How does this mass increase relate to the kinetic energy?  Consider a mass m0, moving at 
speed v, much less than the speed of light. Its kinetic energy E =½m0v², as discussed 
above. Its mass is 2 2

0 / 1 / ,m v− c

1,

 which we can write as m0 +dm, so dm is the tiny mass 
increase we know must occur.  It’s easy to calculate dm.  

For  we can make the approximations  /v c

2 2 2 21
21 / 1 /v c v c− ≅ −  
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So, for  / 1v c

( ) ( )
( )

2 21
0 2

2 21
02

1 /

/ /

m v m v c

dm m v c KE c

≅ +

≅ = 2.
 

Again, the mass increase dm is related to the kinetic energy KE by KE = (dm)c2.   Having 
looked at two simple cases, we’re ready to derive the general result, valid over the whole 
range of possible speeds. 

Kinetic Energy and Mass for Particles of Arbitrary Speed  

We have shown in the two sections above that (in the two limiting cases) when a force 
does work to increase the kinetic energy of a particle it also causes the mass of the 
particle to increase by an amount equal to the increase in energy divided by c2. In fact this 
result is exactly true over the whole range of speed from zero to arbitrarily close to the 
speed of light, as we shall now demonstrate.  

For a particle of rest mass m0 accelerating along a straight line (from rest) under a 
constant force F,  
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Therefore, the work done when the particle moves a distance dx is 
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using v = dx/dt.   
 
 
Therefore the total work done from rest—the kinetic energy—is:  

( )
( ) 20

03/22 2
.

1 /

mFdx vdv m m c
v c

= =
−

∫ ∫ −  

(The integral is easily done by making the substitution y = v2/c2.) 

So we see that in the general case the work done on the body, by definition its kinetic 
energy, is just equal to its mass increase multiplied by c2.  

To understand why this isn’t noticed in everyday life, try an example, such as a jet 
airplane weighing 100 tons moving at 2,000mph.  100 tons is 100,000 kilograms, 
2,000mph is about 1,000 meters per second.  That’s a kinetic energy ½ mv² of 
½.1011joules, but the corresponding mass change of the airplane down by the factor c² = 
9.1016, giving an actual mass increase of about half a milligram, not too easy to detect!  
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Notation: m and m0  

As stated earlier, we use m0 to denote the “rest mass” of an object, and m to denote its 
relativistic mass, 2 2

0 / 1 / .m m v c= −  

In this notation, we follow French and Feynman.  Krane and Tipler, in contrast, use m for 
the rest mass.  Using m as we do gives neater formulas for momentum and energy, but is 
not without its dangers.  One must remember that m is not a constant, but a function of 
speed.  Also, one must remember that the relativistic kinetic energy is (m-m0)c2, and not 
equal to ½mv2, even with the relativistic mass!  

Example: take v2/c2 = 0.99, find the kinetic energy, and compare it with ½mv2 (using the 
relativistic mass). 
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