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Einstein’s Definition of Common Sense  

As you can see from the lectures so far, although Einstein’s theory of special relativity 
solves the problem posed by the Michelson-Morley experiment—the nonexistence of an 
ether—it is at a price.  The simple assertion that the speed of a flash of light is always c in 
any inertial frame leads to consequences that defy common sense.  When this was 
pointed out somewhat forcefully to Einstein, his response was that common sense is the 
layer of prejudices put down before the age of eighteen.  All our intuition about space, 
time and motion is based on childhood observation of a world in which no objects move 
at speeds comparable to that of light.  Perhaps if we had been raised in a civilization 
zipping around the universe in spaceships moving at relativistic speeds, Einstein’s 
assertions about space and time would just seem to be common sense.  The real question, 
from a scientific point of view, is not whether special relativity defies common sense, but 
whether it can be shown to lead to a contradiction.  If that is so, common sense wins.  
Ever since the theory was published, people have been writing papers claiming it does 
lead to contradictions.  The previous lecture, the worked example on time dilation, shows 
how careful analysis of an apparent contradiction leads to the conclusion that in fact there 
was no contradiction after all.  In this lecture, we shall consider other apparent 
contradictions and think about how to resolve them.  This is the best way to build up an 
understanding of relativity.  

Trapping a Train in a Tunnel  

One of the first paradoxes to be aired was based on the Fitzgerald contraction.  Recall 
that any object moving relative to an observer will be seen by that observer to be 
contracted, foreshortened in the direction of motion by the ubiquitous factor 2 21 /v c− .   
Einstein lived in Switzerland, a very mountainous country where the railroads between 
towns often go through tunnels deep in the mountains.  

Suppose a train of length L is moving along a straight track at a relativistic speed and 
enters a tunnel, also of length L.  There are bandits inhabiting the mountain above the 
tunnel.  They observe a short train, one of length 2 21 /L v c− ,  so they wait until this 
short train is completely inside the tunnel of length L, then they close doors at the two 
ends, and the train is trapped fully inside the mountain.  Now look at this same scenario 
from the point of view of someone on the train.  He sees a train of length L, approaching 
a tunnel of length 2 21 /L v c− ,  so the tunnel is not as long as the train from his 
viewpoint!  What does he think happens when the bandits close both the doors?  
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The Tunnel Doors are Closed Simultaneously  

The key to understanding what is happening here is that we said the bandits closed the 
two doors at the ends of the tunnel at the same time.  How could they arrange to do that, 
since the doors are far apart?  They could use walkie-talkies, which transmit radio waves, 
or just flash a light down the tunnel, since it’s long and straight.  Remember, though, that 
the train is itself going at a speed close to that of light, so they have to be quite precise 
about this timing!  The simplest way to imaging them synchronizing the closings of the 
two doors is to assume they know the train’s timetable, and at a prearranged appropriate 
time, a light is flashed halfway down the tunnel, and the end doors are closed when the 
flash of light reaches the ends of the tunnel.  Assuming the light was positioned correctly 
in the middle of the tunnel, that should ensure that the two doors close simultaneously.  

Or are they?  

Now consider this door-closing operation from the point of view of someone on the train.  
Assume he’s in an observation car and has incredible eyesight, and there’s a little mist, so 
he actually sees the light flash, and the two flashes traveling down the tunnels towards the 
two end doors.  Of course, the train is a perfectly good inertial frame, so he sees these 
two flashes to be traveling in opposite directions, but both at c, relative to the train.  
Meanwhile, he sees the tunnel itself to be moving rapidly relative to the train.  Let us say 
the train enters the mountain through the “front” door.  The observer will see the door at 
the other end of the tunnel, the “back” door, to be rushing towards him, and rushing to 
meet the flash of light.  Meanwhile, once he’s in the tunnel, the front door is receding 
rapidly behind him, so the flash of light making its way to that door has to travel further 
to catch it.  So the two flashes of light going down the tunnel in opposite directions do 
not reach the two doors simultaneously as seen from the train.  

The concept of simultaneity, events happening at the same time, is not invariant as we 
move from one inertial frame to another.  The man on the train sees the back door close 
first, and, if it is not quickly reopened, the front of the train will pile into it before the 
front door is closed behind the train.  

Does the Fitzgerald Contraction Work Sideways?  

The above discussion is based on Einstein’s prediction that objects moving at relativistic 
speed appear shrunken in their direction of motion.  How do we know that they’re not 
shrunken in all three directions, i.e. moving objects maybe keep the same shape, but just 
get smaller?  This can be seen not to be the case through a symmetry argument, also due 
to Einstein.  Suppose two trains traveling at equal and opposite relativistic speeds, one 
north, one south, pass on parallel tracks.  Suppose two passengers of equal height, one on 
each train, are standing leaning slightly out of open windows so that their noses should 
very lightly touch as they pass each other.  Now, if N (the northbound passenger) sees S 
as shrunken in height, N’s nose will brush against S’s forehead, say, and N will feel S’s 
nose brush his chin.  Afterwards, then, N will have a bruised chin (plus nose), S a bruised 
forehead (plus nose).  But this is a perfectly symmetric problem, so S would say N had 
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the bruised forehead, etc.  They can both get off their trains at the next stations and get 
together to check out bruises.  They must certainly be symmetrical! The only consistent 
symmetrical solution is given by asserting that neither sees the other to shrink in height 
(i.e. in the direction perpendicular to their relative motion), so that their noses touch each 
other.  Therefore, the Lorentz contraction only operates in the direction of motion, objects 
get squashed but not shrunken.  

How to Give Twins Very Different Birthdays  

Perhaps the most famous of the paradoxes of special relativity, which was still being 
hotly debated in national journals in the fifties, is the twin paradox.  The scenario is as 
follows. One of two twins - the sister—is an astronaut . (Flouting tradition, we will take 
fraternal rather than identical twins, so that we can use “he” and “she” to make clear 
which twin we mean).  She sets off in a relativistic spaceship to alpha-centauri, four light-
years away, at a speed of, say, 0.6c.  When she gets there, she immediately turns around 
and comes back.  As seen by her brother on earth, her clocks ran slowly by the time 
dilation factor 2 21 /v c− ,  so although the round trip took 8/0.6 years = 160 months by 
earth time, she has only aged by 4/5 of that, or 128 months.  So as she steps down out of 
the spaceship, she is 32 months younger than her twin brother.  

But wait a minute—how does this look from her point of view? She sees the earth to be 
moving at 0.6c, first away from her then towards her. So she must see her brother’s clock 
on earth to be running slow! So doesn’t she expect her brother on earth to be the younger 
one after this trip?  

The key to this paradox is that this situation is not as symmetrical as it looks.  The two 
twins have quite different experiences.  The one on the spaceship is not in an inertial 
frame during the initial acceleration and the turnaround and braking periods.  (To get an 
idea of the speeds involved, to get to 0.6c at the acceleration of a falling stone would take 
over six months.)  Our analysis of how a clock in one inertial frame looks as viewed from 
another doesn’t work during times when one of the frames isn’t inertial - in other words, 
when one is accelerating.  

The Twins Stay in Touch  

To try to see just how the difference in ages might develop, let us imagine that the twins 
stay in touch with each other throughout the trip.  Each twin flashes a powerful light once 
a month, according to their calendars and clocks, so that by counting the flashes, each one 
can monitor how fast the other one is aging.  

The questions we must resolve are:  

If the brother, on earth, flashes a light once a month, how frequently, as measured by her 
clock, does the sister see his light to be flashing as she moves away from earth at speed 
0.6c?  
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How frequently does she see the flashes as she is returning at 0.6c?  

How frequently does the brother on earth see the flashes from the spaceship?  

Once we have answered these questions, it will be a matter of simple bookkeeping to find 
how much each twin has aged.  

Figuring the Observed Time between Flashes  

To figure out how frequently each twin observes the other’s flashes to be, we will use 
some results from the previous lecture, on time dilation.  In some ways, that was a very 
small scale version of the present problem. Recall that we had two “ground” clocks only 
one million miles apart.  As the astronaut, conveniently moving at 0.6c, passed the first 
ground clock, both that clock and her own clock read zero. As she passed the second 
ground clock, her own clock read 8 seconds and the first ground clock, which she 
photographed at that instant, she observed to read 4 seconds.  

That is to say, after 8 seconds had elapsed on her own clock, constant observation of the 
first ground clock would have revealed it to have registered only 4 seconds.  (This effect 
is compounded of time dilation and the fact that as she moves away, the light from the 
clock is taking longer and longer to reach her.)  

Our twin problem is the same thing, at the same speed, but over a longer time - we 
conclude that observation of any earth clock from the receding spacecraft will reveal it to 
be running at half speed, so the brother’s flashes will be seen at the spacecraft to arrive 
every two months, by spacecraft time.  

Symmetrically, as long as the brother on earth observes his sister’s spacecraft to be 
moving away at 0.6c, he will see light from her flashes to be arriving at the earth every 
two months by earth time.  

To figure the frequency of her brother’s flashes observed as she returns towards earth, we 
have to go back to our previous example and find how the astronaut traveling at 0.6c 
observes time to be registered by the second ground clock, the one she’s approaching.  

We know that as she passes that clock, it reads 10 seconds and her own clock reads 8 
seconds. We must figure out what she would have seen that second ground clock to read 
had she glanced at it through a telescope as she passed the first ground clock, at which 
point both her own clock and the first ground clock read zero. But at that instant, the 
reading she would see on the second ground clock must be the same as would be seen by 
an observer on the ground, standing by the first ground clock and observing the second 
ground clock through a telescope. Since the ground observer knows both ground clocks 
are synchronized, and the first ground clock reads zero, and the second is 6 light seconds 
distant, it must read -6 seconds if observed at that instant.  
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Hence the astronaut will observe the second ground clock to progress from -6 seconds to 
+10 seconds during the period that her own clock goes from 0 to 8 seconds.  In other 
words, she sees the clock she is approaching at 0.6c to be running at double speed.  

Finally, back to the twins. During her journey back to earth, the sister will see the 
brother’s light flashing twice a month.  (Evidently, the time dilation effect does not fully 
compensate for the fact that each succeeding flash has less far to go to reach her.)  

We are now ready to do the bookkeeping: first, from the sister’s point of view.  

What does she see?  

At 0.6c, she sees the distance to alpha-centauri to be contracted by the familiar 
2 21 / 0.v c− = 8  to a distance of 3.2 light years, which at 0.6c will take her a time 5.333 

years, or, more conveniently, 64 months.  During the outward trip, then, she will see 32 
flashes from home, she will see her brother to age by 32 months.  

Her return trip will also take 64 months, during which time she will see 128 flashes, so 
over the whole trip she will see 128 + 32 = 160 flashes.  That means she will have seen 
her brother to age by 160 months or 13 years 4 months.  

What does he see?  

As he watches for flashes through his telescope, the stay-at-home brother will see his 
sister to be aging at half his own rate of aging as long as he sees her to be moving away 
from him, then aging at twice his rate as he sees her coming back.  At first glance, this 
sounds the same as what she sees—but it isn’t!  The important question to ask is when 
does he see her turn around?  To him, her outward journey of 4 light years’ distance at a 
speed of 0.6c takes her 4/0.6 years, or 80 months. BUT he doesn’t see her turn around 
until 4 years later, because of the time light takes to get back to earth from alpha-
centauri!  In other words, he will actually see her aging at half his rate for 80 + 48 = 128 
months, during which time he will see 64 flashes.  

When he sees his sister turn around, she is already more than half way back!  Remember, 
in his frame the whole trip takes 160 months (8 light years at 0.6c) so he will only see her 
aging at twice his rate during the last 160 - 128 = 32 months, during which period he will 
see all 64 flashes she sent out on her return trip.  

Therefore, by counting the flashes of light she transmitted once a month, he will conclude 
she has aged 128 months on the trip, which by his clock and calendar took 160 months.  
So when she steps off the spacecraft 32 months younger than her twin brother, neither of 
them will be surprised!  
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The Doppler Effect  

The above analysis hinges on the fact that a traveler approaching a flashing light at 0.6c 
will see it flashing at double its “natural” rate - the rate observed by someone standing 
still with the light - and a traveler receding at 0.6c from a flashing light will see it to flash 
at only half its natural rate.  

This is a particular example of the Doppler Effect, first discussed in 1842 by the German 
physicist Christian Doppler.  There is a Doppler Effect for sound waves too. Sound is 
generated by a vibrating object sending a succession of pressure pulses through the air. 
These pressure waves are analogous to the flashes of light.  If you are approaching a 
sound source you will encounter the pressure waves more frequently than if you stand 
still. This means you will hear a higher frequency sound.  If the distance between you and 
the source of sound is increasing, you will hear a lower frequency.  This is why the note 
of a jet plane or a siren goes lower as it passes you.  The details of the Doppler Effect for 
sound are a little different than those for light, because the speed of sound is not the same 
for all observers - it’s 330 meters per second relative to the air.  

It isn’t difficult to find the general formula for the Doppler shift, that is, the change in 
frequency observed when the source of waves (or periodic signals in general) is moving.  
For example, consider a light flashing once a second as observed by someone in the same 
frame as the light.  Let us imagine the light to be attached to a spaceship, passing us at a 
relativistic speed v, and imagine we see a flash at the instant it passes us.  When will we 
see the next flash? First, the spaceship’s clock is running slow according to us, so it will 
take 2 21/ 1 /v c−  seconds before it emits the next flash.  But it’s also moving away 
from us, so we won’t see that next flash until the light has traveled back to us over the 
distance covered by the spaceship between flashes.  Since the spaceship is traveling at v, 
and the time between flashes as measured in our frame is 2 21/ 1 / ,v c−  the distance the 

spaceship covers between flashes measures in our frame is 2 2/ 1 / .v v c−   Since the light 
coming back to us from the flash is traveling at c, it covers this distance in time 

2 2/ 1 /v c v c− .  

Thus the total time between our observing the first flash as the spaceship passes close by 
us and the second flash emitted one second later by the spaceship clock is:  

2 2 2 2

1 1
1 /1 / 1 /

v v
v cv c c v c

+
+ =

−− −

/ c  

The change in frequency is the inverse of the change in time between flashes.  Also, 
notice that the shift for a spaceship approaching at speed v is the inverse of that for one 
receding at speed v.  We already established that above for the special case of v = 0.6c, 
where we found the frequency halved for the spaceship receding, doubled for it 
approaching. 
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There are some significant differences between the Doppler effect for light and that for 
sound.  The most obvious one is that if something is approaching you at a speed higher 
than the speed of sound, you won’t hear a thing until it hits!  As we shall see, nothing can 
approach you at greater than the speed of light.  Another difference is that the Doppler 
shift for light depends only on the velocity of the emitter relative to that of the receiver.  
For sound, the shift depends on the velocities of both of them relative to the air.  Finally, 
consider a signal from a moving object moving along a straight line, but not towards you. 
For example, consider a train moving along a straight track, and the nearest point on the 
track is one mile from where you’re standing.  What frequency do you hear (or see) for 
the signal emitted when the train was at the nearest point to you on the track?  For a 
sound signal, you would hear no Doppler shifting at this point. For a light signal, 
however, you would see a frequency shift downwards equal to the time dilation factor. 
This is called the transverse Doppler shift, and is famous historically because it was first 
detected in 1938 by two experimenters, Ives and Stillwell, who even then didn’t believe 
in special relativity!  They interpreted their result as the slowing down of a clock as it 
moved through the aether.  

An important astronomical application of the Doppler Effect is the red shift.  The light 
from very distant galaxies is redder than the light from similar galaxies nearer to us.  This 
is because the further away a galaxy is, the faster it is moving away from us, as the 
Universe expands.  The light is redder because red light is low frequency light (blue is 
high) and we see low frequency light for the same reason that the astronaut receding from 
earth sees flashes less frequently.  In fact, the farthest away galaxies we can see are 
receding faster than the 0.6c of our astronaut! 
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