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Two Electrons in a One Dimensional Well 
So far, we have used Schrödinger’s equation to see how a single particle, usually an 
electron, behaves in a variety of potentials.  If we are going to think about atoms other 
than hydrogen, it is necessary to extend the Schrödinger equation so that it describes more 
than one particle. 
 
As a simple example of a two particle system, let us consider two electrons confined to 
the same one-dimensional infinite square well,  
 

V(x) = 0,   -L/2 < x < L/2 
 

V(x) = ∞   otherwise. 
 

To make things even simpler, let us assume that the electrons do not interact with each 
other—we switch off their electrostatic repulsion.  Then by analogy with our construction 
of the Schrödinger equation for a single electron, we write 
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inside the well, with the wave function going to zero for x1 or x2 equal to L/2 or -L/2.   
 
On looking at this equation, we see it is the same as the Schrödinger equation for a single 
electron in a two dimensional square well, and so can be solved in the same way, by 
separation of variables.  For example, the wave function we plotted for the two 
dimensional rectangular well is in the square case: 
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has the same energy  
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as the physically distinct wavefunction: 
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Interpreting the Wavefunction 
We have already discussed how the above wavefunctions are to be interpreted if they are 
regarded as two-dimensional wavefunctions for a single electron:  ( ) 2

1 2 1 2,x x dx dxψ   is 
the probability of finding the electron in a small area dx1dx2 at (x1, x2).   
 
The natural extension of this interpretation to two electrons is to assume now  

( ) 2
1 2 1 2,x x dx dxψ  is the joint probability of finding electron 1 in a small line length dx1 at 

position x1, and at the same time finding electron 2 in a small length dx2 at x2.   
 
This, however, leads to a real problem. Consider the wavefunction  
 

( ) ( ) ( ) ( ) /
1 2 1 22,3 , , sin 2 / cos 3 / iEtx x t A x L x L eψ π π −=   

 
again. Let us now take specific points, x1 = 0, x2 = L/4.   Then the probability of finding 
electron 1 in an infinitesimal interval at x1 and electron 2 similarly at x2 is zero, because ψ 
is zero at x1 = 0.  On the other hand, the probability of finding electron 2 at x1 (= 0) and 
electron 1 at x2 (= L/4) is not zero.  
 
The problem is this: the electrons are identical (we assume their spins point the same 
way).  We can’t tell which is which, and nobody else can either.  The indistinguishability 
of elementary particles is not like that of apparently identical macroscopic objects, where 
one could always place some tiny mark.  There is no way to mark an electron.  This 
means, though, that the best we can do is to talk about the probability of finding one 
electron at x1 and another at x2, we cannot specify which electron we find where.  
Therefore, any alleged wave function that gives different probabilities for finding electron 
1 at x1, 2 at x2 and finding 2 at x1, 1 at x2 is not physically meaningful.  
 
That is to say, a wave function describing two identical particles must have a symmetric 
probability distribution 
 

( ) ( )2 2
1 2 2 1, , .x x x xψ ψ=  

 
This is definitely not the case with our function ( ) ( )1 22,3 ,x xψ , so although it is a solution 
to the two particle Schrödinger equation, it is not a physically meaningful wave function 
for two particles in a box.  
 
In fact, this is not difficult to fix—recall that the function  ( ) ( )1 23,2 ,x xψ has the same 
energy, and in fact just corresponds to the two particles being switched around, that is to 
say, ( ) ( ) ( ) ( )1 2 2 13,2 2,3, , .x x x xψ ψ=     
 
It follows that the symmetric function 
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( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 2 12,3 2,3 2,3
1, , ,
2

S x x x x x xψ ψ ψ= +  

  
and the antisymmetric function 
 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 2 12,3 2,3 2,3
1, , ,
2

A x x x x x xψ ψ ψ= −  

 
are both solutions to Schrödinger’s equation for the energy E, and both satisfy the 
requirement ( ) ( )2 2

1 2 2 1, ,x x x xψ ψ=  necessary for identical particles, so these are the 
appropriate candidate wave functions for the two particles in the one-dimensional box.  

Bosons, Fermions and the Pauli Exclusion Principle 
It turns out that both symmetric and antisymmetric wavefunctions arise in nature in 
describing identical particles. In fact, all elementary particles are either fermions, which 
have antisymmetric multiparticle wavefunctions, or bosons, which have symmetric wave 
functions.  Electrons, protons and neutrons are fermions; photons, α-particles and helium 
atoms are bosons.   
 
It is important to realize that this requirement of symmetry of the probability distribution, 
arising from the true indistinguishability of the particles, has a large effect on the 
probability distribution, and, furthermore, the effect is very different for fermions and 
bosons.  The simplest way to see this is just to plot ( ) 2

1 2,x xψ   for the symmetric and for 
the antisymmetric wave functions, and compare them. 
 
For the symmetric case, the probability distribution (unnormalized) looks like: 
 

(The graytone figure is a contour map.) 
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The main point to note here is that the highest joint probability is that of finding the two 
particles close together, near (1,1) and (4,4). (These actual points depend on the wave 
function we chose initially, of course). 
 
Now look at the antisymmetric case: 
 

 
 
The difference is dramatic.  For the antisymmetric wave function, the particles are most 
likely to be found far away from each other.  In fact, there is zero probability that they 
will be found at the same spot, because if  ( ) ( )1 2 2 1, , ,x x x xψ ψ= − obviously ( ), 0.x xψ =   
A more general statement is that two fermions cannot be in the same quantum state, 
because if they were, the wave function would be of the symmetric form f(x1)f(x2), and 
could not be antisymmetrized.   
 
This is the Pauli Exclusion Principle—it is the basis of the periodic table, and 
consequently of almost everything else. 
 
We should perhaps emphasize that these wave functions were calculated with the 
electrostatic repulsion between the electrons switched off.  That is not what is keeping the 
electrons apart, although it will increase the separation if it is included.  We should also 
warn against a simple classical picture of the Pauli principle, the thought that two things 
can’t be in the same place, after all, so perhaps it’s no surprise two electrons can’t be in 
the same state. Two electrons can be in the same identical space wave function provided 
that their spins point in opposite ways.  Furthermore, two bosons can be in the same state, 
and although that is perhaps reasonable sounding for photons, it is equally true for heavy 
atoms. In Bose-Einstein Condensation, a large number of atoms occupy the same 
quantum state.  This happens in liquid Helium4 below about two kelvin, it becomes a 
superfluid and flows without friction.  BE condensation has also been achieved with laser 
cooled collections of large atoms in a trap. 
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