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“Moving Clocks Run Slow” plus “Moving Clocks Lose Synchronization” 
plus “Length Contraction” leads to consistency!  

The object of this exercise is to show explicitly how it is possible for two observers in 
inertial frames moving relative to each other at a relativistic speed to each see the other’s 
clocks as running slow and as being unsynchronized, and yet if they both look at the 
same clock at the same time from the same place (which may be far from the clock), they 
will agree on what time it shows! 

Suppose that in Jack’s frame we have two synchronized clocks C1 and C2 set 18 x 108 
meters apart (that’s about a million miles, or 6 light-seconds).  Jill’s spaceship, carrying a 
clock C',  is traveling at 0.6c, that is 1.8 x 108 meters per second, parallel to the line C1C2, 
passing close by each clock. 

Clock  C' Jill 
1.8×108 meters per sec. 

18×108 meters 

Jack Clock  C1 Clock  C2 

Jill in her relativistic rocket passes Jack’s first clock at an instant when both their clocks read zero. 

 

Suppose C'  is synchronized with C1 as they pass, so both read zero. 

As measured by Jack the spaceship will take just 10 seconds to reach C2, since the 
distance is 6 light seconds, and the ship is traveling at 0.6c. 

What does clock C' (the clock on the ship) read as it passes C2?  

The time dilation factor 
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( )2 21 / 4 /v c− = 5 

 so C', Jill’s clock, will read 8 seconds. 

Thus if both Jack and Jill are at C2 as Jill and her clock C'  pass C2 , both will agree that 
the clocks look like:  

18×108 meters 

Jack Clock  C1 Clock  C2 : reads 10 seconds 

Jill Clock  C'  reads 8 seconds 

As Jill passes Jack’s second clock, both see that his clock reads 10 seconds, hers reads 8 seconds. 

How, then, can Jill  claim that Jack’s clocks C1, C2 are the ones that are running slow? 

To Jill, C1, C2 are running slow, but remember they are not synchronized. To Jill, C1 is 

behind C2 by  ( ) ( )2/ / / 6 0.6 3.6 seconds.Lv c L c v c= × = × =

Therefore, Jill will conclude that since C2 reads 10 seconds as she passes it, at that instant 
C1 must be registering 6.4 seconds.  Jill’s own clock reads 8 seconds at that instant, so 
she concludes that C1 is running slow by the appropriate time dilation factor of 4/5.  This 
is how the change in synchronization makes it possible for both Jack and Jill to see the 
other’s clocks as running slow.  

Of course, Jill’s assertion that as she passes Jack’s second “ground” clock C2 the first 
“ground” clock C1 must be registering 6.4 seconds is not completely trivial to check!  
After all, that clock is now a million miles away! 

Let us imagine, though, that both observers are equipped with Hubble-style telescopes 
attached to fast acting cameras, so reading a clock a million miles away is no trick.  
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To settle the argument, the two of them agree that as she passes the second clock, Jack 
will be stationed at the second clock, and at the instant of her passing they will both take 
telephoto digital snapshots of the faraway clock C1, to see what time it reads.  

Jack, of course, knows that C1 is 6 light seconds away, and is synchronized with C2 
which at that instant is reading 10 seconds, so his snapshot must show C1 to read 4 
seconds.  That is, looking at C1 he sees it as it was six seconds ago. 

What does Jill’s digital snapshot show?  It must be identical—two snapshots taken from 
the same place at the same time must show the same thing!  So, Jill must also gets a 
picture of C1 reading 4 seconds.  

How can she reconcile a picture of the clock reading 4 seconds with her assertion that 
at the instant she took the photograph the clock was registering 6.4 seconds?  

The answer is that she can if she knows her relativity!  

First point: length contraction. To Jill, the clock C1 is actually only 4/5 x 18 x 108 meters 
away (she sees the distance C1C2 to be Lorentz contracted!).  

Second point: The light didn’t even have to go that far!  In her frame, the clock C1 is 
moving away, so the light arriving when she’s at C2 must have left C1 when it was 
closer—at distance x in the figure below. The figure shows the light in her frame moving 
from the clock towards her at speed c, while at the same time the clock itself is moving to 
the left at 0.6c.  

It might be helpful to imagine yourself in her frame of reference, so you are at rest, and to 
think of clocks C1 and C2 as being at the front end and back end respectively of a train 
that is going past you at speed 0.6c.  Then, at the moment the back of the train passes 
you, you take a picture (through your telescope, of course) of the clock at the front of the 
train.  Obviously, the light from the front clock that enters your camera at that instant left 
the front clock some time ago.  During the time that light traveled towards you at speed c, 
the front of the train itself was going in the opposite direction at speed 0.6c. But you 
know the length of the train in your frame is 4/5 x 18 x 108 meters, so since at the instant 
you take the picture the back of the train is passing you, the front of the train must be 4/5 
x 18 x 108 meters away. Now that distance, 4/5 x 18 x 108, is the sum of the distance the 
light entering your camera traveled plus the distance the train traveled in the same time, 
that is, (1 + 0.6)/1 times the distance the light traveled.  
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Light from C1 travels towards Jill at c Velocity of clock C1 =0.6c 

x 

4/5×18×108 meters 

As Jill passes C2, she photographs C1: at that instant, she knows C1 is 
4/5×18×108 meters away in her frame, but the light reaching her camera at 
that moment left C1 when it was at a distance x, not so far away.  As the light 
traveled towards her at speed c, C1 was moving away at a speed of 0.6c, so 
the distance 4/5×18×108 meters is the sum of how far the light traveled 
towards her and how far the clock traveled away from her, both starting at x.   

 

So the image of the first ground clock she sees and records as she passes the second 
ground clock must have been emitted when the first clock was a distance x from her in 
her frame, where 

( ) 8 81 3 / 5 4 / 5 18 10  meters, so 9 10  meters.x x+ = × × = ×  

Having established that the clock image she is seeing as she takes the photograph left the 
clock when it was only 9 x 108 meters away, that is, 3 light seconds, she concludes that 
she is observing the first ground clock as it was three seconds ago.  

Third point: time dilation. The story so far: she has a photograph of the first ground clock 
that shows it to be reading 4 seconds. She knows that the light took three seconds to reach 
her.  So, what can she conclude the clock must actually be registering at the instant the 
photo was taken?  If you are tempted to say 7 seconds, you have forgotten that in her 
frame, the clock is moving at 0.6c and hence runs slow by a factor 4/5.  

Including the time dilation factor correctly, she concludes that in the 3 seconds that the 
light from the clock took to reach her, the clock itself will have ticked away 3 × 4/5 
seconds, or 2.4 seconds.  

Therefore, since the photograph shows the clock to read 4 seconds, and she finds the 
clock must have run a further 2.4 seconds, she deduces that at the instant she took the 
photograph the clock must actually have been registering 6.4 seconds, which is what she 
had claimed all along! 

The key point of this lecture is that at first it seems impossible for two observers moving 
relative to each other to both maintain that the other one’s clocks run slow.  However, by 
bringing in the other necessary consequences of the theory of relativity, the Lorentz 
contraction of lengths, and that clocks synchronized in one frame are out of 
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synchronization in another by a precise amount that follows necessarily from the 
constancy of the speed of light, the whole picture becomes completely consistent! 
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