
Mathematical review

This chapter is intended as a brief review of key
ideas and techniques of integral and differential
calculus, vector analysis in Cartesian 3-dimen-
sional space, and the mathematical theory of prob-
ability.

1. Review of Trigonometry
The parts of trigonometry we need are based on
the Law of Pythagoras and algebra. Consider a
right triangle, as shown below. 

The Pythagorean Theorem states “the square of
the hypotenuse of a right triangle equals the sum
of the squares of the sides”. In symbols,

H2 = A2 + O2 

This geometrical fact leads to the famous trigono-
metric identities. We define the following func-
tions of the angle θ shown in the Figure:

sinθ = 
O
H

 cosθ = 
A
H

 

tanθ = 
O
A

 cotθ = 
A
O

These trigonometric functions are pure numbers,
because they are the ratio of two lengths. That is,
they have no units associated with them. If we

divide the Pythagorean Theorem on both sides by
H2, we find

H2

H2 = 1 = 
A2

H2 + 
O2

H2

 = 


A
H




2

 + 


O
H




2

 = cos2θ + sin2θ

That is, for any angle,

cos2θ + sin2θ = 1 .

Next we see that, by definition,

cotθ = 
1

tanθ
 .

Next we recall the different ways of writing angles.
It is common to divide a complete circle into 360
degrees. Each degree is further subdivided into 60
minutes of arc, and each minute into 60 seconds of
arc. That is, a degree has 3600 seconds of arc. The
other common way of writing angles is based on
circles. If a circle has radius R, then the arc sub-
tended between two radial lines, as shown below,
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has length Rθ by definition. So a complete circle
corresponds to an angle of 2π radians.

Trigonometry also gives us formulas for adding
angles:

sin(θ + ϕ) ≡ sinθ cosϕ + cosθ sinϕ

cos(θ + ϕ) ≡ cosθ cosϕ − sinθ sinϕ

From these we can derive all the standard formu-
las—for example, let ϕ = θ : then

sin2θ ≡ 2sinθ cosθ

cos2θ ≡ cos2θ − sin2θ

= 2cos2θ − 1

= 1 − 2sin2θ .

The latter two relations lead to half-angle formulas.

Let 2θ = ϕ; then θ = 
ϕ
2

 and we find:

cos




ϕ
2



 = ±



1+cosϕ
2





1⁄2

sin




ϕ
2



 = ±



1−cosϕ
2





1⁄2

 .

2. Areas and Volumes

ShapeShapeShapeShape FormulaFormulaFormulaFormula
circle Area = π R2

sphere Area = 4π R2

sphere
Vol = 

4π
3

 R2

pyramid
(or cone) Vol = 

1
3

 A × H, where

A=base area, H=height

3. Integration

The definite integral ∫ f(x) dx
a

b
  is the area be-

tween the graph of the function and the x-axis as
shown below: 

We estimate the integral by breaking up the area
into narrow rectangles of width w that approxi-
mate the height of the curve at that point and then
adding the areas of the rectangles1. For rectangles
of non-zero width the method gives an approxima-
tion. If we calculate with rectangles that consis-
tently protrude above the curve (assume for
simplicity the curve lies entirely above the x-axis),
and with rectangles that consistently lie below the
curve, we capture the exact area between two
approximations. We say that we have bounded the
integral above and below. Symbolically,

w  ∑ 
n=0

(b−a) ⁄ w

 min f(a + nw), f(a + nw + w)

  ≤  ∫  
a

b
f(x) dx

  ≤  w  ∑ 
n=0

(b−a) ⁄ w

 max f(a + nw), f(a + nw + w) .

x
y
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1. If a rectangle lies below the horizontal axis, its area is considered to be negative.



It is easy to see that each rectangle in the upper
bound is about w|f ′(x)|too high2 on average,
hence overest imates the area by about
1
2

w2|f ′(x)|.  There are (b–a)/w such rectangles, so

if |f ′(x)| remains finite over the interval [a, b] the
total discrepancy will be smaller than

1
2

w (b − a)  max
a ≤ x ≤ b

  |f ′(x)| . 

Similarly, the lower bound will be low by about the
same amount.  This means that if we halve w (by
taking twice as many points), the accuracy of the
approximation will double.  The mathematical

definition of ∫  
a

b
f(x) dx is the number we get by

taking the limit as the width w of the rectangles
becomes arbitrarily small. We know that such a
limit exists because the actual area has been cap-
tured between lower and upper bounds that shrink
together as we take more points.

As a historical/cultural note, the notation for an
integral involves the integral sign ∫ itself and a
factor dx. The dx reminds us first, which variable
we are integrating with respect to; and second, that
we are summing up rectangles of height f(x) and
width ∆x. The integral sign ∫ is actually an elon-
gated letter S, standing for “sum”, to remind us that
integration consists of adding the areas of a large
number of rectangles.

4. Differentiation
The derivative of a function is defined by a limiting
process. Assuming it exists, we call the derivative
of a function the limit

f ′(x)  =
df

  lim
∆x  →  0

     




f(x + ∆x)  −  f(x)
∆x




 .

The notation f ′(x) is Isaac Newton’s3; Leibniz, the

co-inventor of calculus, used the notation 
df
dx

 to

remind us of the underlying limiting process. 

It is easy to use the definition of a derivative to
derive rules for differentiating certain kinds of
functions—for example the product rule

d
dx

 f(x) g(x)  =  f(x) dg(x)
dx

  +  
df(x)
dx

 g(x) ,

and the chain rule

d
dx

 f 

g(x)


  =  f ′ 


g(x)


  g ′(x) .

Here are some common derivatives that the stu-
dent should know without having to look up

Table of first derivatives

function derivative

xα α xα − 1

sin x cos x

cos x − sin x

ex ex

ax ax log a

(continued on next page)
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2.  f ′(x) is the slope of the line tangent to the curve at the point  x. It is called the first derivative of f(x).  See
the definition in §4 below.

3. Newton is one of two mathematicians credited with the invention of the calculus—the other is Gottfried
Leibniz. Since the calculus was invented (independently) by them in the late 17th Century, it is today
more than 300 years old and therefore sufficiently venerable to count as a classic discipline, like Latin,
Greek or Western literature.



Table of first derivatives

function derivative

log x x−1

tan x sec2 x

sin−1 x 

1 − x2



−1⁄2

cos−1(x) − 1 − x2


−1⁄2

tan−1(x) 
1 + x2



−1⁄2

5. The fundamental theorem of calculus

Suppose we think of ∫  
a

b
f(x) dx  as a function—call

it F(b)—of the upper limit, b. What would happen
if we compared the area F(b) with the area
F(b + ∆b) ? We see that the difference between the
two is (for small ∆b) is

∆F(b)  =  F(b + ∆b)  −  F(b)

≈  f(b) ∆b  +  O (∆b)2
 .

so that

dF(b)
db

  =  lim
∆b→0

   
1

∆b
  



∫  dx

a

b+∆b
  − ∫  f(x) dx

a

b
 




→   f(b) .

This is a fancy way to say that integration and
differentiation are inverse operations, in the same
sense as multiplication and division, or addition
and subtraction. It is usual to write the primitive
integral, or primitive of a function as

F(x)  =
df

  ∫  
 x

f(x′) dx′ .

(Here we have written the variable of integration
as x′ to distinguish it from the upper limit—there
is a good deal of sloppyness about this in mathe-
matical literature, the upper limit and variable of
integration often being denoted by the same let-
ter.)

6. Functions of several variables
In physical applications we must often deal with
quantities that depend on several independent
variables. For example, the temperature can differ
from one place to the next, as well as varying in
time4.

Consider a function q(x, t) depending on both
position x (in one space dimension, for simplicity)
and time t. We might be interested in how it varies
if—say—time increases by a small amount while
we hold the position constant; or conversely we
might want to know how it varies from one posi-
tion to an adjacent one at a given moment of time.
This introduces the notion of  partial derivatives,
defined by

∂q
∂t

  =
df

  lim
∆t → 0

    




q(x, t + ∆t)  −  q(x, t)
∆t





and

∂q
∂x

  =
df

  lim
∆x → 0

    




q(x + ∆x, t)  −  q(x, t)
∆x




 .

That is, partial derivatives are computed just like
ordinary derivatives except we pretend the other
variable (that we are not differentiating with re-
spect to) is just a constant; the curly d (∂ ) reminds
us of this. An example might be

q(x, t)  =  37.2 xα cos t

for which the partial derivatives are
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4. Anyone who has ever added hot (or cold!) water while taking a bath can verify this from personal experi-
ence.



∂q
∂t

  =  −37.2 xα sin t

∂q
∂x

  =  37.2 α  xα − 1 cos t .

A somewhat more complex example is

q(x, t)  =  e−3x
2 ⁄ t

for which

∂q
∂t

  =  
3x2

t2
 e−3x

2 ⁄ t

∂q
∂x

  =  
−6x

t
 e−3x

2 ⁄ t .

A question that arises frequently when considering
functions of several variables is “differentiating
under the integral sign”. That is, suppose we define
a function

Q(t)  =  ∫  
a

b
q(x, t) dx .

Is it legitimate to compute the derivative with
respect to t by interchanging the order of differen-
tiation and integration? Or, put another way, can
we naively write

d
dt

 Q(t)  =  lim
∆t → 0

   




Q(t + ∆t)  −  Q(t)
∆t





  =   ∫
a

b

    lim
∆t → 0

   




q(x, t + ∆t)  −  q(x, t)
∆t




 dx

  =   ∫   
∂q(x, t)

∂t
  dx

a

b

with any possibility of getting the same result both
ways? The answer to this rhetorical question is
“Yes, if the function q(x, t) is sufficiently well be-
haved.”

Mathematicians derive unholy glee from finding
horrible functions that serve as counter-examples
to any given proposition. Because differentiating
under an integral sign requires interchanging the

order of performing two limiting processes, it is
virtually guaranteed that there exist some func-
tions for which such interchange will yield false
results. However we do not permit such functions
in the mathematical descriptions of physical proc-
esses. The functions we encounter in this course
are always well-behaved.

Another case of this sort involves higher partial
derivatives. It is clear what we mean by

∂2q(x, t)
∂t2

 or 
∂2q(x, t)

∂x2  .

But what does the mixed partial derivative

∂2q(x, t)
∂t ∂x

mean, and is it the same as the mixed partial
derivative

∂2q(x, t)
∂x ∂t

 ?

The process needed to get the first mixed deriva-
tive is simply to calculate the function

p(x, t)  =  
∂q(x, t)

∂x

and then to calculate 
∂p
∂t

 . To get the second we

differentiate in the opposite order. Although there
certainly exist functions for which the orders can-
not be interchanged, the functions we shall use will
always permit interchanging the order.

7. Ordinary differential equations
We are sometimes confronted by equations of the
form

dx
dt

  =  f(x, t) .

Such an equation is called an ordinary differential
equation (ODE) of first order.

The simplest such equation has the form

dx
dt

  =  f(t) ;
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where f(t) is a known function of t. That is, the
unknown function does not appear on the right
side. Such equations can be solved by integrating
both sides with respect to the independent vari-
able, t:

x(t)  −  x(a)  =  ∫ dx
ds

 ds

a

t

  =  ∫ f(s) ds
a

t

 .

The equation

dx
dt

  =  f(x, t)

can sometimes be solved with an integrating factor:
if we can find a function g(x, t) which, when it
multiplies both sides

g(x, t) dx
dt

  =  g(x, t) f(x, t) 

converts both sides to perfect derivatives (of other
functions) then we have reduced the problem to
one of performing some integrals.

The linear ODE of first order can always be solved
by an integrating factor. Writing it in the form

dx
dt

  +  x f(t)  =  g(t)

where f(t) and g(t) are known functions, we see that
the factor

F(t)  =  exp 


∫ f(s) ds

t 



turns the left side into a perfect derivative and the
right side into a known function:

F(t) 


dx
dt

  +  x f(t)

  ≡  

d
dt

 x F(t)  =  F(t) g(t) .

The solution therefore has the form

x(t) F(t)  =  constant  +  ∫ F(s) g(s) ds

t

.

Since F(t) is never zero we can always solve the
above for x(t), adjusting the constant of integration
to match an initial value.

Finally, some equations are separable: they have
the form

dx
dt

  =  A(x) B(t)

where A and B are known functions, so we can
rewrite them as

dx
A(x)

  =  B(t) dt

and integrate both sides (with respect to their
respective variables). Here is an example that
arises in the description of an object with air resis-
tance moving vertically in a gravitational field:

v 
dv
dy

  =  −g  ±  Γ v2.

The sign depends on whether the object is rising
(–) or falling (+). Hence

v dv
g  +

__
  Γ v2  =  −dy

or

y  =  y0  −  1
2
  ∫   du

g  +
__

  Γu
v0

2

v
2

where we have changed the variable of integration
to u  =  v2, and where y0 is a constant of the motion
with an obvious meaning. The remaining integral
will be recognized from the table of derivatives as
the function

 ∫ du
g  +

__
  Γu

u

  =  
1
Γ

 lng  +
__

  Γu ,

so that the full solution becomes

y  =  y0  −  1
2Γ

  ln




g  +
__

  Γv2

g  +
__

  Γv0
2




 .

We now look at some simple second-order differ-
ential equations. The first thing to know is that in
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general they are very hard. For example, the equa-
tion5

x
..
  +  p(t) x

.
  +  q(t) x  =  f(t)

is linear (the function x(t) and its derivatives appear
only to first degree) but its solutions can be com-
plicated functions. A considerable literature—de-
riving mainly from the 19th and early 20th
Centuries—discusses specific examples of this
equation that arise in physics problems. This lit-
erature is summarized in many good books on
mathematical methods of physics6.

Here we shall only consider three types of second
order ODEs. The first has constant coefficients
(although the driving function f(t) , sometimes
known as the inhomogeneous term, need not be a
constant). Suppose it is zero, and p and q are
constants. Then the function

x(t)  =  A eλt

solves the equation, as long as λ is a root of the
secular equation

λ2  +  pλ  +  q  =  0 .

For example, the equation for the viscous-damped
harmonic oscillator has the form7

x
..
  +  γ x

.
  +  ω2 x  =  0 ;

its secular equation is

λ2  +  γ λ  +  ω2  =  0

with solutions (here i2  =  −1)

λ  =  −  
γ
2

  ±  iΩ  =  −  
γ
2

  ±  i 



ω2 − 

γ2

4




1⁄2

 .

This is less horrific than it looks—it just means the
solutions have the form

x(t)  =  

AcosΩ t  +  BsinΩ t e

−γt ⁄ 2

where A and B must be adjusted to match the
initial conditions.

The second type of second-order equation has the
form

x
..
  =  f(x) .

This equation can always be integrated once by
means of the integrating factor x

.
 :

x
.
 x
..
  =  x

.
 f(x) ,

or

d
dt

 




x
.2

2



  =  

d
dt

   ∫ f(s) ds

x(t)

 .

Integrating both sides we have

x
.2

2
  =    ∫ f(s) ds

x(t)

  +  constant .

This equation is separable, but the result may not
be integrable in closed form. For example, if we go
beyond the usual linear approximation for the
simple pendulum we obtain

θ
..

  +  ω2 sinθ  =  0 ,

giving a first ntegral

1
2

 θ
.

2  +  ω2 cosθ  =  E ;

we can solve for θ
.
(t) and separate the resulting

equation:
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5. Here we have adopted the “dot” notation of Sir Isaac Newton. A single dot over a variable denotes its first
derivative, two dots the second derivative, etc.

6. For example, J. Mathews and R.L. Walker, Mathematical Methods of Physics (W.A. Benjamin, Inc., New
York, 19xx).

7. We shall be using this equation a lot to describe the motion of limbs, Brownian motion of charged particles
in a magnetic field, or the behavior of sensory cilia in a fluid.



dθ
dt

  =  ±  2E  −  2ω2 cosθ
 1⁄2

or

∫ du E  −  ω2 cos u
 −1⁄2

θ

  =  ±  t √2  .

The integral defines something called an elliptic
function, which is rather more complicated than
we need to deal with here.

Finally, suppose the second order equation is really
a first order one in disguise. For example our old
friend, the object falling freely, with air resistance,

y
..
  =  −g  +

__
  Γ y

.2

has this form if we change variables. Let

v  =  y
.
 ;

then

dv
dt

  =  −g  +
__

  Γv2

which is separable and can be integrated once.
However, the integral involves the arctangent
function, which can be rather ugly to integrate
further. Hence we employed a trick: the chain rule
of differentiation lets us write

dv
dt

  ≡  
dv
dy

 ⋅ dy
dt

  ≡  v 
dv
dy

which is how we eliminated the time variable in
favor of the (vertical) distance traveled.

8. Vectors
We now consider vectors in 3-dimensional
Cartesian coordinate spaces. Normally we choose
three orthogonal directions and label the coordi-
nate axes x, y, z . The common labelling is right-
handed as shown below (a left-handed coordinate
system would be one in which the positive and
negative directions along any one axis were inter-
changed).

A vector is an ordered set of three numbers repre-
senting a point in the coordinate system in terms
of distances from the origin taken along the axes.
Thus the vector

r→  =
df

  (x, y, z)  ≡  x x̂  +  y ŷ  +  z ẑ

represents a point a distance x along the x-axis, a
distance y along the y-axis, etc. 

We can multiply a vector by a constant:

λ r→  =
df

  (λx, λy, λz) ;

thus the preceding definition introduces an alter-
native notation, in which the vector is represented
as the sum of three vectors pointing along the three

axes. The special vector x̂  is a unit vector, that is,

one whose length is 1; and similarly for ŷ  and ẑ .

We can add two vectors: if

r→  ≡  x x̂  +  y ŷ  +  z ẑ

and

s→  ≡  u x̂  +  v ŷ  +  w ẑ ,

then

r→  +  s→  ≡  (x + u) x̂  +  (y + v) ŷ  +  (z + w) ẑ  .

We can combine two vectors to make a scalar:

r→ ⋅ s→  ≡  xu  +  yv  +  zw .

This is called the scalar product, or “dot product”
of two vectors. Its geometrical meaning is the
cosine of the angle between the two vectors mul-
tiplied by the product of their lengths:

r→ ⋅ s→  =  |r→| |s→| cos θ ;

from this it is clear that the dot product of a vector
with itself is just the square of its length:

 r→ ⋅ r→  =  |r→|2  ≡  x2 + y2 + z2 .

Finally, in three dimensions it is possible to define
a vector multiplication of two vectors:
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r→ × s→  ≡  (yw − zv) x̂ +

+ (zu − xw) ŷ + (xv − yu) ẑ .

We can remember the precise definition of the
vector product (sometimes called the “cross-prod-
uct”) using either of two mnemonic devices: first,
we can write the vector product as a determinant
which can be evaluated using Cramer’s rule:

r→ × s→  =  det 







x̂
x
u
   

ŷ
y
v
   

ẑ
z
w

 






  =  − s→ × r→ .

 Alternatively, note that the unit vectors have the
vector products

x̂ × ŷ  ≡  ẑ

ŷ × ẑ  ≡  x̂

ẑ × x̂  ≡  ŷ

(also note that the vector product of any vector
with itself is zero because of the antisymmetry).

As we can see from the rules for unit vectors, the
cross product of two vectors is a vector that is
perpendicular to the plane formed by the two
vectors being multiplied. The length of the prod-
uct vector is given by 

| r→ × s→ |  =  |r→| |s→| sin θ

where θ is the angle between them.

The vector product is needed in two places:
1. in the description of rotations;

2. to express compactly the force on a moving
charged particle in an external magnetic field
(the Lorentz force):

F
→
  =  

Q
c

  v→ × B
→

 ,

and thence the force on a current-carrying wire in
a magnetic field (the principle of the electric mo-
tor).

9. Vector analysis
The last topic in this primer summarizes certain
operations involving partial differentiation and
multiple integration, that arise frequently in physi-
cal applications.

Suppose we want the difference between a func-

tion of position at a point r→  =  (x, y, z) and a neigh-
boring point, which we shall call

r→  +  dr→  =  (x + dx, y + dy, z + dz) .

That is, we want to calculate

dΦ  =
df

  Φ(r→ + dr→ )  −  Φ(r→ )

=  Φ(x + dx, y + dy, z + dz)  −  Φ(x, y, z) .

Since each of the small differences dx, dy, dz is
independent of the other two, we see that to first
order in the differences,

dΦ  =  
∂Φ
∂x

 dx  +  ∂Φ
∂y

 dy  +  
∂Φ
∂z

 dz .

This looks like a scalar product of the two vectors

dr→  =  (dx, dy, dz)  =  dx x̂  +  dy ŷ  +  dz ẑ

and

∇Φ   =  ∂Φ
∂x

 x̂  +  
∂Φ
∂y

 ŷ  +  ∂Φ
∂z

 ẑ .

The latter is called the gradient of Φ.

Thus we write the change in Φ compactly as

dΦ  =  ∇Φ  ⋅ dr→ .

Another type of partial derivative that arises fre-
quently is the divergence. That is, suppose we have
a vector, each of whose components is a function
of position8.  An example might be an electric field
or a magnetic field—either can be expected to vary
from point to point, both in magnitude and direc-
tion. A vector field that is particularly interesting
in this course is the flux of a moving fluid. If the
fluid has a number-density n(x, y, z, t) and a local
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velocity vector v→ its flux vector (or current den-
sity) is defined to be

j
→
  =

df

  n v→ .

This has the physical meaning of the number of
particles flowing across a unit area perpendicular
to the flux vector, per unit time.

Suppose we calculate the net outflow from an
infinitesimal volume such as that shown below. By

convention we erect unit vectors 

û1, … , û6

perpendicular to each face of the parallelopiped,
pointing outward from their respective faces; the
net outflow is then

−  
dN
dt

  =  ∑ 
k=1

6

   j
→
(k) ⋅ ûk dSk

where the area of the k’th face is dSk and j
→
(k) is the

value of j
→

 at that face. If we work out the details
we find that the net outflow is proportional to

something called the divergence of j
→

: 

div j
→
  ≡  ∇  ⋅ j

→
   =

df

   
∂
∂x

 jx  +  ∂
∂y

 jy  +  
∂
∂z

 jz .

The reason it is often written in the form ∇  ⋅ j
→

 is
mnemonic: if we think of the symbol ∇  as a vector
in its own right,

∇   =  ∂
∂x

 x̂  +  
∂
∂y

 ŷ  +  
∂
∂z

 ẑ ,

and forget for the moment that its “components”
are operations rather than numbers, then the “dot
product” of that vector with a vector field is just
the sum of the “products” of the corresponding
components of the two vectors. At this point we
recall that the components of ∇  are operators of
differentiation, so when they “multiply” the corre-
sponding components of the vector field, we must
understand this as an instruction to carry out the
differentiation.

An operation that arises so often it is given its own
name is to take the divergence of a vector field that
is itself the gradient of a scalar function: for exam-
ple, in electrostatics we write

∇  ⋅ E
→
  =  4π ρ   (one of Maxwell’s equations)

where

E
→
  =  −∇  Φ .

Combining these we have the Poisson equation
(also called the inhomogeneous Laplace equation)

div (∇  Φ)  ≡  ∇  ⋅ (∇  Φ)  =  −4π ρ .

Working out the details we see that

∇  ⋅ (∇  Φ)  =  
∂2Φ
∂x2   +  

∂2Φ
∂y2   +  ∂

2Φ
∂z2

so we define the Laplacian operator,

∇ 2  ≡  ∇  ⋅ ∇   =
df

  ∂2

∂x2  +  ∂2

∂y2  +  ∂2

∂z2 .

It can be enormously convenient to treat mathe-
matical operations as abstract entities that can be
separated from the things they are operating on
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and added, multiplied and so forth according to
appropriate rules. This approach was introduced
(along with the vector notation) by the brilliantly
eccentric English physicist Oliver Heaviside
(1850-1925). It is now so universally used that few
recall the origin of these ideas.

To see how valuable the operational calculus can
be, we now derive Green’s theorem9 in just a
couple of lines. In solving certain partial differen-
tial equations arising in electromagnetic theory,
acoustics or quantum mechanics, we construct a
function of the form

G  =  Φ ∇ 2 Ψ  −  Ψ ∇ 2 Φ .

Now it is easy to show (basically by the product
rule of differentiation) that 

G  ≡  ∇  ⋅ Φ ∇  Ψ  −  Ψ ∇  Φ .

Thus if we integrate G over some volume, then by
Gauss’s theorem we can convert the integral to one
over a surface surrounding that volume. In other
words, 

∫∫∫
V

 G dV  =  ∫∫∫
V

 ∇  ⋅ 

Φ ∇  Ψ  −  Ψ ∇  Φ dV

=  ∫∫
S

 Φ ∇  Ψ  −  Ψ ∇  Φ ⋅ dS
→
 .

Using Green’s theorem it is possible to specify the
solutions of certain partial differential equations,
throughout the volume of interest, knowing only
the values of the function (and of another, called
the Green’s function) on S, and the components
of their  gradients normal to S. Showing how this
is done would, however, take us too far afield.

Before leaving the subject of vector analysis, it is
worth stressing certain identities. First,

∇  × (∇ Φ)  =  curl (grad Φ)  ≡  0

∇  ⋅ (∇  × A
→

)  =  div ⋅ (curl A
→

)  ≡  0 .

And we sometimes need the identity

∇  × (∇  × A
→

)  =  curl (curl A
→

)

    ≡  ∇  (∇  ⋅ A
→

)  −  ∇  2 A
→

 .

10. Basic ideas of probability theory
Probability theory is so fundamental in physics it is
all but taken for granted. The basic notion is a
numerical representation of the likelihood of a
chance event, which we call a probability. For
concreteness let us imagine a cubical die (that is,
one of a pair of dice) whose six faces are marked
with 1–6 spots. If we throw the die there are six
possible distinct outcomes: it can land on one of
its faces, with the face opposite up. Assuming, by
symmetry, that there is no reason for one outcome
to be more likely than another, we assign a priori
probabilities 1

6
 to each outcome.

We should draw attention, despite their obvious-
ness, to two aspects of this assignment: first, a
probability is a number p in the range 0 ≤ p ≤ 1.
Second, the events we are describing must be
distinct, or mutually exclusive: if 3 dots are show-
ing, then 5 dots cannot be simultaneously showing.

Let us consider more complicated situations: sup-
pose A and B are two possible events, and suppose
we perform an experiment with n equally likely
outcomes:
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n1 = outcomes with A but not B
n2 = outcomes with B but not A
n3 = outcomes with both A and B
n4 = outcomes with neither A nor B

Since this exhausts all the possibilities we have

n1 + n2 + n3 + n4  =  n .

The probability of A is

p(A)  =  
n1 + n3

n

and that of B is

p(B)  =  
n2 + n3

n
 .

But there are more complex possibilities. For ex-
ample, the probability of A or B (or both—this is
“or” in the logical sense) is

p(A + B)  =  
n1 + n2 + n3

n

and the probability of both occurring (the joint
probability) is

p(AB)  =  
n3

n
 .

Last we define conditional probabilities: for exam-
ple, the probability that A occurs, given that we
know B has occured, is

p(A|B)  =  
n3

n2 + n3

(that is, in the set of all outcomes with B occurring,
what fraction have A occurring also). Similarly,

p(B|A)  =  
n3

n1 + n3
 .

From these examples we can deduce some general
rules:

p(AB)  =  p(B) p(A|B)  ≡  p(A) p(B|A)
and

p(A + B)  =  p(A)  +  p(B)  −  p(AB) .

An example of the latter is the probability that if
you draw two cards from each of two well-shuffled
decks, at least one will be a king. The probability
of drawing a king is assumed to be the same as that
of drawing any other card, namely 1

13
 , and since

the events are  independent  (that  i s ,
p(B|A)  ≡  p(B) ) we have

p( at least 1 king )  =  
1
13

  +  
1
13

  −  
1

169
 . 

It is worth noting that if two events are mutually
exclusive,

p(AB)  =  0 .

Suppose we have a third event, C. Since

p(B) p(A|B)  =  p(A) p(B|A)
it must be true that

p(B|A)  =  
p(B)
p(A)

 p(A|B)

and for event C, 

p(C|A)  =  
p(C)
p(A)

 p(A|C) .

If we divide the first relation by the second, p(A)
cancels out and we have Bayes’s theorem

p(B|A)
p(C|A)

  =  
p(B)
p(C)

  
p(A|B)
p(A|C)

 .

Here is an example of Bayes’s theorem: suppose we
have drawers A, B and C containing two gold, one
gold and one silver, and two silver coins, respec-
tively. If the drawers are unlabelled and we take a
coin from one (without looking inside), what is the
probability that we the other coin is gold? That is
we want to know the probability that, having
found a gold coin (call this event D), the drawer
we chose at random is drawer A. In symbols we
want to calculate p(A|D). Now we know that
p(C|D)  =  0 (because then we would definitely
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have pisked a silver coin). We also know that since
we had to have picked one of the drawers,

p(A|D)  +  p(B|D)  +  p(C|D)  =  1 .

Bayes’s theorem tells us that

p(A|D)
p(B|D)

  =  
p(A)
p(B)

  
p(D|A)
p(D|B)

  =  
1⁄3
1⁄3

  
1

1⁄2
  =  2 ;

hence we conclude

p(A|D)  =  2⁄3 , p(B|D)  =  1⁄3 .

This problem, incidentally, is equivalent to one
that the columnist Marilyn Vos Savant (the person
with the world’s highest IQ) got right and many
mathematics professors got wrong.

Bayes’s theorem can give insight into the correct-
ness and power of a theory, given certain observa-
tions.

Thus consider the probability p(M|GR) that Gen-
eral Relativity is correct, given that it predicts the
(observed) residual perihelion precession of Mer-
cury’s orbit. General Relativity gives a unique an-
swer for this value, so the probability of observing
it would in theory be a δ-function. However, ob-
servational error smears the probability distribu-
tion into a sharply peaked curve centered at the
optimum value. What can we compare the theory
to? Suppose we consider alternate physics based on
some non-uniform mass distribution (that has not
yet been observed) that leads to a term propor-

tional to 
1
r3 in the gravitational potential of the

Sun. The coefficient of this extra term is not
well-determined since the only restriction is that
it must be too small to influence the orbits of the
other planets (since these are not seen to precess).
Thus we must assign a much broader probability
distribution to the alternate theory, p(M|A) .
Bayes’s theorem says that

P(GR|M)
p(A|M)

  =  
p(GR)
p(A)

  
p(M|GR)
p(M|A)

 ;

we do not know the a priori probabilities, p(GR),
p(A) that either theory is correct. But it is reason-
able to assume in the absence of evidence to the

contrary that they are roughly equal. In this case,
the experimental result combined with the sharp
prediction of General Relativity favors Einstein’s

theory over plausible alternatives by something
like 40 to 1.

Now we discuss some well-known probability dis-
tributions. Among discrete distributions the most
common are the binary and Poisson distributions.
They can be derived by writing down equations
that describe the processes, then solving the equa-
tions.

Consider an experiment involving two out-
comes—for example heads or tails, with prob-
abilities p and q such that p + q = 1. Define the
probability to have n heads after a series of N tosses
of the coin as Pn(N) . Now it is easy to see that

Pn(N)  =  p Pn−1(N−1)  +  q Pn(N−1)

or in words, the probability that after N–1 tosses
there were n–1 heads, times the probability that
the next toss produced heads, plus the probability
that there were already n heads and one threw a
tail. This is a difference equation in two indices,
and difficult to solve without a trick: the idea is to
multiply Pn by a variable sn and sum over n to
produce a new function called the generating func-
tion
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GN(s)  =  ∑ 
n=0

N

  Pn(N) sn .

Note that GN(1)  =  1 .

It is easy to see that the generating function satis-
fies the equation

GN(s)  =  p s  +  q GN−1(s)

whose solution is

GN(s)  =  GN(1)  

p s  +  q

N
  ≡  


p s  +  q


N

from which we can recover the probabilities by
expanding the binomial:

GN(s)  =  ∑ 
n=0

N

  


N
n



 pn qN−n sn

or

Pn(N)  =  


N
n



 pn qN−n .

This is called the binomial distribution. Just for fun
let us calculate the expected number of heads in
N tosses: this is just

〈n〉 N  =  ∑ 
n=0

N

  n 


N
n



 pn qN−n  ≡  





dGN(s)
ds



s=1

 .

The last identity gives us an easy way to evaluate
the sum: we get

〈n〉 N  =  


d
ds

 

p s  +  q

N

s=1

  =  pN .

We could also ask for the variance of this number,
defined by

Var  (n)N  =  〈 (n − 〈n〉)2 〉 N

=  ∑ 
n=0

N

  (n − pN)2 


N
n



 pn qN−n .

Evaluating this sum (for example, by the previous
trick) we find

Var  (n)N  =  pqN .

Thus the statistical uncertainty or standard devia-
tion (square root of the variance) is

σ  =  √  p q N   .

Next we consider a physical process like a tele-
phone exchange or a Geiger counter. Events (tele-
phone calls, radioactive decays) come randomly
spaced in time, but at some average rate α so that
in a time t we may expect to have counted α t such
events. Now if Pn(t) is the probability at time t of
having observed n events, we may say that

Pn(t + dt)  =  Pn−1(t) α dt  +  Pn(t) 1 − α dt

 .

This leads to the differential-difference equation

d
dt

 Pn(t)  =  α 

Pn−1(t)  −  Pn(t)

 .

Defining the appropriate generating function by
analogy with the preceding example, we find the
differential equation

d
dt

 G(s, t)  =  α (s − 1) G(s, t)

or

G(s, t)  =  e−α t eα t s  ≡  ∑ 
n=0

∞

 e−α t 
(α t)n

n!
 sn .

That is, if we define λ  =  α t as the expected
number of hits, the probability of n hits is

Pn  =  e−λ 
λn

n!
 .

This is called the Poisson distribution.

It is easily seen that the probabilities sum to 1 for
positive λ and that

〈n〉  =  λ

Var(n)  =  λ .
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That is, the statistical uncertainty in a counting
experiment is always

σ  =  

〈n〉


 1⁄2
 .

Poisson distributions apply to political polling as
well as to the theory of statistical fluctuations in a
gas. In a gas of mean number-density n

_
 a volume

∆V contains

N  =  n
_
 ∆V  ±  


n
_
 ∆V



1⁄2

(that is, the average number ± σ ). If we make the
volume too small, therefore, the relative size of the
fluctuations becomes comparable to the average
number, hence there is no meaning to the averag-
ing process. Such effects show up in microcircuits
as noise (because charge comes in electron-size
units). In the days of vacuum tubes the limiting
factor in amplification was the “shot effect” noise
(resembling lead shot or BBs dropped on the floor)
because at low currents only a few electrons could
be expected to arrive in any time interval.
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