
Musculoskeletal system

This chapter analyzes the gross aspects of the
skeleton, muscles and tendons as a system of ar-
ticulated levers operated by ropes, pulleys and
contractile units. The object of this system is to
exert forces of various kinds on the external
world—for example to move the animal (locomo-
tion) or to procure food.

1. Skeletons of land verterbrates
The verterbrate skeleton consists of bone1, a com-

posite material consisting of bone cells, collagen
(a fibrous protein arranged in long strands), and
inorganic rod-like crystals of Ca10(PO4)6(OH)2,
perhaps 50 Å in diameter and 200 to 2,000 Å long.

The quantitative properties of bone are given in
the Table below:

Properties of Bone 
Type of Stress Ultimate Strength

(× 108  Nt ⁄ m2)
Compression 1.5
Tension 1.2 — 1.5
Bending 2.1 — 2.2
Young’s modulus 171 — 185

2. Muscle
Muscle tissue consists of basic contractile units
called sarcomeres. The sarcomeres are attached
end to end, with the demarcations marked by

Z-membranes. At the microscopic level, the sar-
comere contracts because the cross-bridges on the
myosin fibers ratchet along the actin fibers. We
discuss this in more detail in Chapter X, Bioener-
getics.

The sarcomere  can move only one way: it con-
tracts. Thus (contractile) muscular force must be
balanced by a weight, a spring, or an opposing
muscle, in order that the fibers can be pulled back
to their initial uncontracted state.

The important things to remember about muscles
are 
1. they can exert a maximum stress of  3×105

Nt/m2; and 

2. they can contract at most 20–25% of their
overall length (maximum strain=0.2–0.25).
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1. Data on the properties of bone were taken from the article: “bone”, Encyclopædia Britannica Online
(Copyright © 1994-2001 Encyclopædia Britannica, Inc.).



3. Mechanical (dis)advantage
We now analyze the muscular contraction force
needed to lift a given weight. To do this we must
take into account the articulated bones, which act
somewhat like scissors jacks. 

Because muscle can contact at most 25% of its
length, the arrangement of vertebrate skeletal lev-
ers actuated by muscular contraction sacrifices
mechanical advantage for range of motion. A sec-
ondary result is that the “output” achieves absolute
speeds much greater than those of the muscular
contractions. 

A second constraint on the evolutionary optimiza-
tion of organisms is the fact that muscles can only
exert force while contracting. To make a muscle
return to its uncontracted state it is necessary to
pair it with a muscle that, when contracting,
stretches the opposing muscle2. That is, all limbic
muscles occur in pairs, called flexors and extensors.

Virtual work
To analyze the levers and muscles comprising a
limb, we apply the principle of virtual work3. For
example, suppose the leg shown to the right raises
the weight W by a distance δh, and thereby per-
forms work W δh. In so doing, the angle of the
femur (thighbone) from the vertical changes from
θ to θ − δθ. 

Taking the femur and tibia (shinbone) to be the
same length L, and the muscles and tendons to
have the (greater) length l, we see from the (Py-
thagorean theorem) that

l2  =  L2 + 2Ldsinθ + d2

where d is the offset of the muscle attachments.
The muscle exerts a force T over the distance δl

hence does work T δ l. Since the tendon attaches
below the knee, we set

W δh  ≈  2T δ l

and noting that 

δh  =  −2Lsinθ δθ ,

at last find

T  =  W tanθ 1 + 2Γsinθ + Γ2


1⁄2

where Γ is the ratio L⁄d . For small angles from the
vertical, very little tension is needed to raise or
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2. This is not universal—exoskeletal animals like spiders extend their muscles using a hydraulic system,
whereas certain other muscles compress springy tissues that expand when the muscles relax.

3. See, e.g., H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley Publishing Co., Reading, MA,
1980), p. 17ff.



lower the weight. However, for angles beyond 45o

the force rises very rapidly indeed. For my leg the
ratio Γ is about 3.3, hence at an angle of 45o the
mechanical (dis)advantage (at 45o) is about 4.
Thus the tension must equal 4 times the weight to
be lifted. But at an angle of 60o the tension rises to
7 times the weight. This is why exercise physiolo-
gists warn us not to perform knee bends at angles
exceeding 45o—we can damage our knee liga-
ments at higher angles!

Example

Let us estimate how much I can bench press. My
upper arm has a circumference of 15 inches or
38 cm. Setting this to 2πr I find the radius of my
upper arm muscles (biceps and triceps) to be
r ≈ 6 cm. Their total cross-section is thus some
114 cm2. The cross-section of the upper arm bone
(humerus) is perhaps 3 cm2, so we may take the
area of the triceps to be about 74 cm2 (about 2⁄3
the difference). Multiply by the maximum stress,
3×105 Nt/m2, to get a net force of 2220 Nt per arm
muscle. From the preceding analysis we see that
the net weight I can lift (using my triceps alone) is

W  =  Tmax 
 d 
l

  cotθ ;

with L=32 cm and d=7 cm, and with θ=45o, we
get 

W  ≈  2 × 
2220
5.3

 Nt  ≈  189 lb .

This is very close to the amount I can currently
bench press (10 repetitions), about 180 lb.

4. Hill’s Law
Many of the ideas in this section are taken from
the excellent book by C.J. Pennycuick.4 The physi-
ologist A.V. Hill proposed the following empirical
relationship5 betweenthe absolute speed of muscu-
lar contraction and the force being exerted by the
muscle:

v  =  v0 
Fmax − F

F0 + F

where Fmax, F0 and v0 are  empirically determined
parameters. It turns out to be convenient to ex-
press Hill’s equation in terms of the stress, 

σ  =
df

  
F
A

 ,

and the strain rate 

ψ  =
df

  
1
δt

 
δx
L

  ≡  
v
L

 .

We can express the stress in terms of the strain rate,

σ  =  
σmaxψ0  −  σ0ψ

ψ0  +  ψ

and use the result to calculate, for a given strain
rate, the power output per unit volume of muscle
tissue:

P  =  σ ψ .

Different types of muscle tissue contract at differ-
ent maximum rates6. The so-called “fast” muscles
are (relatively) anærobic in their metabolism.
(That is, they use a chemical reaction that does
not require free oxygen to generate their energy.)
Anærobic muscles contain fewer mitochondria
(the sites of oxidative phosphorylation) and lower
density of myoglobin (myoglobin is related to
hæmoglobin; it is used by muscle cells to store
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4. C.J. Pennycuick, Newton Rules Biology (Oxford U. Press, Oxford, 1992).
5. A.V. Hill, Proc. Roy. Soc. Ser. B 126 (1938) 136-195; see also Science Progress 38 (1950) 209-230.
6. We are speaking here of striated rather than smooth muscle tissue. The latter behaves very differently

and is not involved in locomotion.



oxygen), than the “slow” muscles. In other words,
“fast” muscle tissue is usually paler in color than
“slow” muscle tissue.

The (qualitative) specific power curves for the two
types of muscles are shown in the figure below. We
see that the maximum power is developed by fast

muscles at a higher strain rate. Another factor that
influences the ratio of fast to slow muscle fibers in
a given muscle group is their endurance. Anærobic
metabolism (which all cells are capable of, to some
extent) generates lactic acid which must be re-
moved by the usual transport mechanisms lest it
interfere with muscle function. Thus, the ærobic
muscles are for sustained effort at moderate speeds,
whereas the anærobic ones are for emergency
speed in short bursts.

We conclude that there is an optimum speed for
each type of muscle, and that evolutionary selec-
tion will lead to the optimal adaptation of muscle
types to the demands made on them.

5. Basics of locomotion
We shall concentrate here primarily on human
locomotion, although the general principles apply
to all land animals. First, we note that all locomo-
tion requires cyclic motions of the legs: after one
period the pattern repeats. 

We define three parameters of locomotion. The
speed v is obvious; the stride length s is the distance
between successive placements of the same foot;
and the stepping frequency f is the inverse of the
time interval ∆t between successive placements of
the same foot: f  =  1 ⁄ ∆t .

Clearly these parameters are related by7

v  =  
s
∆t

  ≡  s f .

If an animal must increase its speed of locomotion,
it can only do so by increasing its stepping fre-
quency, its stride length, or both.

Broadly speaking, only two types of gait are ob-
served in locomotion: walking and running8. The
distinction is that in walking, the animal always has
at least one foot on the ground; whereas at some
point in running all the animal’s feet are off the
ground. This distinction profoundly affects the
animal’s performance.

Walking
According to D’Arcy Thompson9, animals walk
faster by increasing their stride length, or as he put
it, “stepping out”. In fact, a simple experiment on
a treadmill demonstrates the falsity of this claim:
the graph on p. 27 below presents data from the
author’s walking and running on a treadmill. It is
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7. This is exactly the same as the relation between frequency, wavelength and propagation speed.
8. The elephant’s amble (or shamble) is a walk, whereas the trot, canter and gallop are variations of run-

ning gaits distinguished by the order in which the legs move.
9. D’Arcy Wentworth Thompson, On Growth and Form (Cambridge U. Press, New York, 1961), p. 29.

(This is an abridged and annotated version of the 1917 edition.)



easy to see that for a wide range of walking speeds
my stepping frequency is proportional to my speed.
(This experiment has been repeated by my stu-
dents, with essentially the same results.) That is, I
increase my walking speed by increasing my pace,
not my stride length.

When we look for an explanation of this observa-
tion, we realize that nothing else is possible. In
walking the legs are always bearing the animal’s
weight. The diagram below relates the forces along

the leg bones to the opening angle of the legs. As
we can see, the force increases rapidly as the open-
ing angle increases. That is, the forces that must
be exerted by the muscles, simply to keep the
animal from sprawling, must increase beyond the

point of efficiency. (You can try this if you wish, but
be careful!)

Another viewpoint treats the leg as a rigid pole
with a mass on its end. When the foot is planted,
the pole rotates about the point of contact.

The initial angular momentum of a mass m moving
horizontally at speed v, a vertical distance l cosθ0

above the ground, is

J  =  mv l cosθ0 .

Once the end of the pole is planted in the ground,
the mass rotates about the point of contact. The
angular momentum is then

J  =  m l2 θ
.

since the moment of inertia is m l2. We now use
conservation of angular momentum to say that

J  =  mv l cosθ0  =  m l2 θ
.
 .

The equation of motion of an inverted pendulum
of the form shown below is

m l2 θ
..

  =  mgl sinθ

from which we can see, by integrating once10 with

the integrating factor θ
.
  =  

dθ
dt

 that

θ
.

2  +  2ω2 cosθ  =  θ
.

0
2  +  2ω2 cosθ0  =  const.

(This is also the equation of conservation of en-
ergy, once the rotation begins.11)
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10. See any standard reference on mechanics, such as Goldstein (op. cit.) or ordinary differential equations.



In order that the pole vaulter complete his vault,
the angular velocity must not vanish before the
angle decreases to 0 (top of the arc—note: angles
are usually taken to be positive in the counter-
clockwise direction). This means that

θ
.

0
2  ≥  

2g
l

 

1  −  cosθ0

 ,

or, imposing conservation of energy,

v2

2gl
  ≥  secθ0 

secθ0  −  1

 .

That is, if the angle between the legs is too large
the walker has difficulty completing his stride.

Of course the above argument is only schematic—
realistic walking involves bending the knee and a
pelvic rotation (because the legs are actually an-
gled to keep the body’s center of mass over the
feet). We also use the rotation of the foot about the
ankle joint to prolong the time of contact with the
ground while our center of mass rises and falls.
Thus the center of mass need not rise as much as
it would with rigid legs. Nevertheless, the con-
straints of statics and dynamics tend to keep the

leg angles roughly constant, meaning that the ratio
of stride length to leg length remains essentially
independent of walking speed. The conclusion is
that the best way for a walking animal to increase
its speed is to increase its stepping frequency.

Scaling arguments
R.M. Alexander12 has graphed the (dimension-
less) ratio of stride length to leg length, vs. the
dimensionless Froude number 

ϕ  =
df

  
v2

gl

for a variety of animals. One such graph appears
below. The line through the data represents a
regression (least-squares) fit. Also note that both
the horizontal and vertical scales are logarithmic
(equal distances represent factors of 10). That is,
Professor Alexander is saying that he expects to
discover a relation in the form of a power law,

s
l
  =  f(ϕ)  ~  α ϕβ ,
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11. We note that energy is not conserved in the initial collision of the pole with the pivot point—if it were,
the vaulter and pole would recoil!

12. R.M. Alexander, “How dinosaurs ran”, Scientific American April, 1991, p. 130ff.



where α and β are constants.

A rough argument that might justify such an ex-
pectation goes as follows: since

v  =  s f

and since, for a pendulum (inverted or otherwise)
a characteristic frequency is

f  ∝   


g
l



 
1⁄2

,

we see that

s
l
  ∝   





v2

gl




1⁄2

  =  ϕ0.5 .

In fact, the slope of the line at the fastest gaits does
approach 0.5 (meaning that the exponent β is
close to 1⁄2).

The first comment that we can make about the
attempt to fit the data with a regression curve is
that the data below ϕ  ≈  0.5 (roughly where the
gait changes from walking to running) should not
scale at all. That is, since geometry limits the leg

opening angle to a certain range, the ratio 
s
l
 is more

or less independent of speed, hence of ϕ. We can
also argue that if locomotion is akin to vaulting,
the angle θ0 has to obey the inequality



θ0

  ≤  cos−1 


2

1 + √ 1 + 2ϕ Γ
  

 ,

where Γ is a geometrical constant. The time for the
pole vaulter to rotate from angle θ0 to −θ0 can be
computed by separating the variables in the equa-
tion of motion: we find

ω∆t  =  ∫  dθ  

Λ  +  2


cosθ0 − cosθ




 −1⁄2

−θ0

 θ0

where Λ is the dimensionless parameter

θ
.

0
2 ⁄ ω2  =  ϕ ⁄ cos2θ0 .

Here is a table of ϕ, twice the stepping frequency
(in terms of ω), and the initial leg angle, that
illustrates this point:

ϕ 2f ⁄ ω θ0 (deg)

( Γ  =  1)
0.1 0.399781 17.36
0.2 0.398596 23.64
0.3 0.397565 27.99
0.4 0.410874 30.00
0.5 0.439127 30.00
0.6 0.462887 30.00
0.7 0.483315 30.00
5.0 0.727090 30.00
10.0 0.790407 30.00
20.0 0.839795 30.00

We see 2f ⁄ ω  is nearly independent of ϕ, over a
wide range of ϕ. 

In other words, the data shown in Alexander’s
graph on the preceding page are better fit with two
straight lines, one that is horizontal (exponent 0)
and one with slope (exponent) 0.5 . 

Timing
We now take a closer look at the stepping fre-
quency. Pennycuick13 has measured the stepping
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frequencies of various African mammals, and de-

termined that they scale as l 
−1⁄2, as shown in the

graph below.

This is, of course, what would be expected if loco-
motion were pendulum-like. However, consider
the frequency for an animal of leg-length 1 m: from
the graph it should be 0.9 Hz, whereas from the
table above we extract a somewhat smaller number
at the walk, namely about 0.6 Hz (note we must

multiply by ω  =  


g
L




1⁄2

  ≈  3.1 Hz and divide by 2).

The same animal runs at a frequency of nearly
2 Hz. The predicted frequency of the pendulum
model is 1.13 Hz, barely half that observed14. 

What are we to conclude from this disagreement?
There are several alternatives:

1. The omitted details, such as bending the
leg or damping,  are so important as to
materially change the numerical results.

2. The timing is not primarily determined by
the kinematics of an inverted pendulum,
but rather by some other aspect of the
problem, such as the forces exerted by the
animal’s muscles.

I tend to favor the second possibility. The notion
that an animal tends to walk “in resonance” with
its pendulum motion (or at some other natural
frequency) arose from the intuition that a swing
goes higher if we push in time with it—that is, if
we drive the system at resonance. This point of
view misleads, however. While it is true that we
can most easily store energy at resonance, the
energy dissipated per cycle is just the integral of
dissipative force times distance:  

∆E  =  ∫o  F
→
 ⋅ dx

→

where the integration follows one complete cycle
(the integral does not vanish since the frictional
force always opposes the motion, i.e. the integrand
is negative). Since this is independent of the driv-
ing force, we expect the power dissipated in alter-
nately contracting and relaxing muscles to be
proportional to the contraction frequency.

In other words, there is no particular advantage,
insofar as minimizing energy loss to friction is con-
cerned, in driving the musculoskeletal system at a
resonant frequency. Therefore in my opinion the
scaling of stepping frequency as the inverse 0.5
power of the leg length, observed by Pennycuick
and others, results from some other aspect of the
problem. Or in other words, to conclude from this
empirical scaling law that locomotion is best rep-
resented as a swing metronome is an example of
the logical fallacy known as post hoc, ergo propter
hoc15.

To understand what is going on, then, we must
return to our understanding of muscle tissue. As
we saw, each type of muscle has an optimal con-
traction speed, or in dimensionless terms, an opti-
mal strain rate ψ . Presumably what we are
observing is that strain rates, optimized for the
entirety of an animal’s lifestyle to maximize the

probability of species survival, scale as L
−1⁄2 .

Whether we can model the factors that lead to
such optimization sufficiently well to explain the
empirical scaling law, is another question.

Walking power
We have seen by direct measurement (p. 27) that
walking gaits maintain constant stride length and
vary speed by varying the stepping frequency. We
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14. These results are insensitive to Γ.
15. “After this, therefore on account of this.”



now attempt to estimate the mechanical power
consumption of walking and compare it with data.

From the inelasticity of the collision of a leg with
the ground, assuming the correctness of the pole-
vault model, we see that the mechanical energy
loss per step is

∆E  =  
1
2

 mv2 sin2θ0 .

The power input, to keep a constant pace is there-
fore

P  =  
∆E
∆t

  =  
1
2

 mv2 2f sin2θ0  ≈  
mv3

4s
  =  

mv3

8l
 ,

where we have taken θ0  =  30 o . For a 100 Kg
person walking at 3.5 mi/hr (1.6 m/sec) with leg
length 1 m, we find a (mechanical) power loss of
51 Watts.

Let us compare this with the actual power con-
sumption, taken from the table shown below16

Energy cost of walking at various speeds

Weight (lb)

mi/hr 100 120 140 160 180 200 220

2.0 65 80 93 105 120 133 145

2.5 62 74 88 100 112 124 138

3.0 60 72 83 95 108 120 132

3.5 59 71 83 93 107 119 130

4.0 59 70 81 94 105 118 129

4.5 69 82 97 110 122 138 151

5.0 77 92 108 123 138 154 169

6.0 86 99 114 130 147 167 190

7.0 96 111 128 146 165 187 212

According to this table, the rate of energy con-
sumption in this exercise is 130 Kcal/mi. If we
convert this to power, we obtain

1.3×105 ⋅ 4.2 ⋅ 3.5  joules
3600  sec

  ≈  530  watts ,

a factor of 10 greater than our estimate. We must
ask wherein lies the discrepancy. First, as we shall
see when we study some thermodynamics, the
efficiency of conversion of chemical (food) energy
to mechanical work is only 20%-25% in humans.
This accounts for a factor of, say, 4 or 5. But then
we have also neglected internal friction in our
book-keeping, as well as losses from imperfect res-
titution by the (springy) tendons. These dissipative
effects could easily amount to another 50 watts of
mechanical power consumption, which would ac-
count for everything. Finally, it is not clear whether
the above value of 130 Kcal/mi includes basal me-
tabolism (which amounts to some 50-75 W) for
that person.

Our simple model predicted that the energy cost
to transport a unit mass a unit distance should be
independent of mass and should vary as the
square17 of the speed. The data from the table do
indeed predict a mass-independent cost, and do
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16. …cited on an exercise website, http://walking.about.com/sports/walking/library/how/blhowcalburn.htm
17. The power per unit mass varies like v3 so the energy per unit distance varies like one less power of v.



seem to increase asymptotically as v2. However, the
data exhibit a dip—that is, there seems to be a
speed at which the efficiency of converting food
into transport is maximum.

What leads to this minimum? We recall from the
figure on p. 26 that each type of muscle has an
optimal contraction speed, at which it produces
maximum mechanical power output. Thus we
should expect, for each animal, an optimum
speed of locomotion. Of course the minimum
is much flatter than the maximum in the graph
of power vs. strain rate, since the inherent
power requirement of walking is growing as v3.

6. Transition to running
When we analyze running gaits (trot, canter,
gallop) we see that at some point in the cycle the
animal’s feet are entirely free of the ground. That
is, running consists of a series of forward bounds.
Among bipedal animals like humans and ratite
birds (ostrich, emu, etc.) this is true at every step.
It is also true of the cheetah, which leaps twice
each stride. In heavier quadrupeds such as horses,
rhinoceri and giraffes, the animal is airborne only
once per complete stride. Presumably larger ani-
mals must take some extra steps per stride to
correct their balance and adjust their takeoff posi-
tion.

Precise observations of the gaits of running animals
were not possible until near the end of the 19th
Century. The persistance of human vision pre-
cluded early observers from being able to deter-
mine, for example, whether a horse keeps three,
two or one feet on the ground while galloping.
Controversy has raged over the precise number,
probably since the first painter drew a galloping

animal on the wall of his cave. No one, prior to the
sequential photographs18 of Eadweard Muybridge
(1830-1904) would have been so bold as to hazard
the opinion that the horse becomes fully airborne.
This is shown in the second and third frames of the
figure below. 

The question now arises, “Why does an animal
bother to run?” Manifestly it is to move faster than
a walk will accomplish. But for the physicist the
question is why running works better than simply
moving the legs faster.

We recall that the speed of locomotion  is given by

v  =  sf

and that in walking s remains fixed and f increases
proportionately to speed, for the geometric reasons
we have discussed. In running, the opposite hap-
pens: the stepping frequency remains nearly con-
stant and the stride length is proportional to the
speed. In fact, the stride length is the distance of
the jump19,

s  =  
2vx vy

g
 ,

where the velocity vector at takeoff is
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18. Muybridge’s work, financed by the railroad baron Leland Stanford, led eventually to Edison’s kinetis-
cope, thence to the motion picture, and all the consequences thereof.

19. The student will recognize this as the formula for the range of a projectile.



v
→
  =  





vx

vy





and as usual x is the horizontal and y the vertical
direction. If the height h of jump is a constant, then
the stride length is proportional to the speed, and
this explains Alexander’s results for running:

s
l
  =  2 



h
l




1⁄2

 




v2

gl




1⁄2

  ∝   ϕ0.5,

where h is the maximum height of the jump. (It
may also explain the spread in Alexander’s results,
since h ⁄ l is certainly not the same for all species.)

Running power
Finally, we look at the power requirement of run-
ning. By definition,

P
m

  =  
∆E
∆t

  =  (1 − η) 
gvx

4
 λ + λ−1



where

λ  =  
vy

vx
 .

Here η is the fraction of kinetic energy that can be
stored in the stretching of tendons and restored as
kinetic energy for the next stride. The minimum

value of λ + λ−1 is 2, but to avoid excessive stress
on takeoff and landing, most animals tend toward
values of λ much smaller than unity.

In retrospect it should not surprise us that running
power may be written

P  =  ζ mg vx

where ζ is a dimensionless constant. Clearly the
average force an animal exerts in running at con-
stant speed must be proportional to its weight, mg;
since power is force times speed, voila!

The upshot is that running power increses only as
the first power of speed. Margaria, et al.20 have
measured the energy cost of walking and running
as a function of speed, using trained athletes as test
subjects. Their data appear in the graph below. We

note that as we expect from our previous results,
walking power increases (at least as fast) as v3

whereas running power is linear in v. Therefore, at
some speed vcrit the power cost for walking will
exceed that for running, and the animal will
change gaits. From the graph I have extracted the
empirical relation (in MKS units)

 
P
m

  =  0.6  +  4.6 vx .

If we suppose 75% of the energy is stored and that
the power is minimized, we find the coefficient of
vx to be 

0.125 g  =  1.225 J/kg-m,

which, when multiplied by 4 to convert to total
energy usage, gives 4.9—close enough to the em-
pirical value of 4.6. The constant term, 0.6, must
be related to basal metabolism. If a 70 Kg person
eats 2000 Kcal/day to maintain body weight, then
this is about 1.4 watts/kg. It is close enough to the
0.6 W/kg in the above formula that we may con-
clude they are the same (especially since the latter
figure is suspect).
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Other considerations
I stated that the power cost of walking grows at least
as fast as v3; in fact, because the stride length in
walking is fixed, and because the stepping fre-
quency is limited by the maximum contraction
frequency of the leg muscles, the chemical power
requirement becomes infinite at some walking
speed. A better way to say this is that the rate of
energy consumption is inversely proportional to a
factor that vanishes at a finite maximum strain rate
of muscle tissue. The reason for this is that the
chemical energy to make a myosin cross-bridge
switch from one actin site to another is constant.
Hence the chemical energy needed to contract a
muscle a certain distance is independent of the
strain rate. However, empirically, the mechanical
power output is zero at zero strain rate and also at
the maximum strain rate. This is just Hill’s Law
discussed in §4 above. Hence to get the same
mechanical power output when the strain rate is
higher than optimum the body recruits more mus-
cle fibers. This process ends (short of infinity!)
when all the available muscle is in use.

Maximum speed
The transition from walking to running therefore
is an economy measure, that reduces the rate of
increase of power with speed. The upper limit on
speed may be imposed by two factors: 

1. The maximum power output the organism can
sustain. Since 75-80% of the energy produced
must be dissipated as heat, the strain on an
exothermic animal’s cooling system can become
severe. For example, assuming the power re-
quirement to be similar to that of humans, an
animal running at 5 m sec–1 generates power at
the rate of 23 Watts Kg–1. If the heat is to be
dissipated by water evaporation, the rate of
evaporation will be about 0.008 gm sec–1. For a
70 Kg animal this amounts to water loss of 4 Kg
in the course of a 42 Km run. It is thus not
surprising that Phidippides (who bore the news
of victory from Marathon to Athens in 490 BC)
died at the end of his run, nor that modern

marathon runners carry liquid with them and
drink as they run. 

2. The maximum stress the animal’s tendons and
ligaments can sustain. Each time an animal
reverses its vertical direction it must subject
itself to substantial vertical acceleration—sev-
eral g’s, in fact. The harder the running surface,
the greater the shock. (This is the origin of “shin
splints”, wherein the tendons of the lower leg
separate painfully from the bone.) 

A human sprinter has a top speed of about
23 mi/hr. The horse, giraffe, buffalo and rhino-
cerous can gallop at about 30 mi/hr. Cheetahs
and gazelles are said to be capable of 60 mi/hr
bursts of speed. To achieve such speeds an ani-
mal must be capable of leaping higher than the
norm—and cheetahs and gazelles are indeed
excellent leapers. They are also relatively light,
and are built on a particularly springy plan,
hence they are less liable to injure themselves
on takeoff and landing.

Whether it is stress or heat dissipation that most
limits the top speeds of running mammals, how-
ever, is not definitely known. The cheetah’s ability
to sustain a sprint extends to perhaps 100 or so
meters. The effort clearly exhausts them, as much
video footage of their hunts confirms.

Animals that cannot run
As we have seen, the time a running animal can
be airborne is

thang  =  
2vy

g

The average acceleration an animal experiences in
changing from landing to takeoff is of order

2g 
hmax

∆h
  =  

vy
2

∆h
  =  

vy
2

γl

where ∆h is the stopping distance, which we sup-
pose to be a fraction γ of the leg-length.

The maximum (momentary) acceleration humans
can sustain without serious injury is about 5 g.
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Since strength-to-weight ratio scales as M −1⁄3, an
elephant’s maximum sustainable acceleration
should be a bit over 1 g. That is, an elephant has
no safety margin for anything as athletic as jump-
ing. In consequence, elephants must not leave the
ground during locomotion, consequently their
ability to run may be primarily limited by their
ability to withstand stress.

Of course this may also be a sort of chicken-and-
egg problem. Since the maximum height of a jump
does not scale with body size, and since, empiri-
cally, the stepping frequency scales inversely as
√ l , an elephant or larger animal may not be able
to run because it has literally “run out of time”—it
cannot get its legs back and forth in the available
time, so it does not try to. It walks—or rather,
shambles21.
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21. But don’t make an elephant angry—it can shamble along at 15 mi/hr, a lot faster than anyone but a
trained runner can go!
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